- Traditional spine companies’ supply chains are linear, labour intensive and siloed and their inventory-to-revenue ratios tend to be high
- To remain relevant in an environment where the physical and digital worlds are converging company leaders will need to improve their supply chains
- Digitalization can help achieve this but requires embracing data management techniques
- As a response to the COVID-19 crisis some MedTech’s introduced and extended their digital strategies
- Have they done enough to remain relevant in a rapidly evolving ecosystem?
- Low back pain and the global spine industry - Digitalization: the reinvention of spine companies’ supply chains and controlling the inventory-to-revenue ratio
In 2020, spine companies, like most MedTechs, absorbed shocks of the COVID-19 crisis by digitizing aspects of their supply chains, which consists of a wide range of transactions and constitute a significant part of a company’s’ total value creation. Industry observers are asking: Will enterprises extend their digitalization strategies and emerge stronger after the impact of the pandemic, or will they reduce their digital activities and emerge weaker?
Market changes
Even before the COVID-19 pandemic, the days of business-as-usual for spine companies were numbered as technologies advanced, regulations became more stringent, populations aged, healthcare systems struggled with unsustainable costs of surgeries for common age-related degenerative disc disorders, and payors tightened their reimbursement policies. In the US, which is the biggest market for spinal implants and devices, an increasing percentage of people have become covered by Medicare and Medicaid [state and federal government healthcare programmes], which reimburse providers at a fraction of private healthcare insurance levels. These changes encouraged independent hospitals in the US to join purchasing syndicates, clinicians to give up private practice and become salaried employees of hospitals, and private payors to shift away from a fee-for-service provision towards a value-based reimbursement approach focussed on improving patient outcomes and lowering costs. This shift encouraged policies to keep patients out of hospitals and increased the utilization of outpatient settings and other measures expected to improve outcomes and generate shared savings.
The structural headwinds described here have not abated and are likely to intensify over the next five years. To prosper in this evolving ecosystem, companies will need to devise and enhance solutions that bring enhanced clinical benefits to patients and economic rewards to the system. Tried and tested and widely used digital strategies can help to improve supply chains. However, while these structural changes have been progressing, spine market supply chains have tended to remain linear and labour-intensive and are now becoming significant obstacles to change, while producing infrastructures with unsustainable costs.
In the Commentary
This Commentary suggests that, over the next five years, market forces will oblige spine companies to pivot away from their inefficient supply chains and start developing supply networks, predicated upon digital strategies that add value to patients and reduce costs. Such systems, employ common digital applications that are used extensively in other industries to ensure the right products and services are delivered to the right place, at the right time, at the lowest cost. This would constitute a “first step” in a bigger digital transformation of the spine market, which will be necessary to create new levels of productivity, growth, and sustainability. We suggest that the reluctance of some MedTech’s to transition from inefficient supply chains to efficient ones could be explained by a significant proportion of their C suite members not acquiring a familiarity with digital systems until much later in their careers when they were adults. The Commentary uses two concepts: ‘digitization’ and ‘digitalization’. The former is a process to convert various physical signals into digital formats and the latter leverages digitized information to improve business processes.
|
|
Digitizing supply chains
Over the past two decades the cost of digital technologies has plummeted while their power and capabilities have substantially increased. This has enabled business leaders to combine technologies associated with information and operations and empowered them to create value in new and different ways. Improved processing capabilities now augment human thinking to analyse more data more quickly, and then act upon the outcomes. Such changes have ushered in the new digital era for MedTech’s.
|
|
However, the spine market has been slow, compared to other industries, to adopt digital supply networks. The process of developing such strategies to drive productivity, while absorbing the shock of a pandemic has not been easy as it meant installing new technologies under pressure. However, the COVID-19 crisis created an incentive to reconfigure operations. The companies that did this have an opportunity to develop an omnichannel [multichannel approach to sales and marketing] dedicated to enhancing engagements with healthcare professionals and improving the overall quality of care, patient outcomes, revenues, productivity, employee satisfaction, and talent attraction and retention. But this will mean companies establishing virtual options as a core competence and reinventing the way they engage with stakeholders to provide a seamless experience across digital, remote, and in-person channels.
Neo Medical and value-based spine care
A firm that has employed digital strategies to streamline part of its supply chain to enhance value and gain a competitive edge is Neo Medical, a privately held Swiss company founded in 2013 by two former Stryker employees. The company has developed a universal value-based surgical spine platform to provide patients with high quality outcomes at relatively low costs. Neo’s approach is predicated upon its ability to reduce an instrument set, comprised of >200 screw sizes to 14, and use it in a novel approach to thoracolumbar fusion. [The thoracolumbar spine is the area between your stiff thoracic cage and your mobile lumbar spine].
Neo refers to its solution as a ‘controlled fixation’, which is beginning to have an impact in markets across the EU-27, Asia-Pacific (APAC) and more recently, the US. The approach is designed to facilitate an anatomically neutral, balanced, and stable spine load bearing to achieve a more functional fusion. It is reported that the platform: (i) enables clinicians to limit stress overload on a patient’s spine and thereby reduces the risk of screws loosening and hardware failing, (ii) limits infections, (iii) removes the need for re-sterilization, (iv) declutters the operating room, (v) reduces revision rates and (vi) cuts costs.Equally important are Neo’s digital strategies to provide an easier and more efficient experience for patients, surgeons, and hospitals.
Findings of a study, published in the December 2020 edition of Interdisciplinary Neurosurgery, suggest that Neo Medical’s value proposition saves costs by: (i) reducing supply chain processing and logistical expenses, (ii) decreasing rates of contaminated instruments, (iii) minimizing operating room delays and (iv) potentially lowering revision and infection rates.
Reconfiguring the supply chain
By contrast, traditional industry supply chains tend to be linear, labour intensive and siloed. As suggested by Neo Medical and others, digitalization can transform these inefficient systems into dynamic, interconnected efficient networks with the capacity to accommodate a range of stakeholders simultaneously. The shift from linear, sequential structures to interconnected, open supply operations could provide a foundation for how spine companies compete in the future.
|
|
Companies in other sectors have already made such transformations and integrated their supply networks into their operations and decision-making processes with the objective of gaining competitive advantages. However, business leaders should be mindful that the more customer focussed enterprises become, the more developed their data and analytical capabilities must be.
|
|
Currently, few MedTech’s integrate their supply chains into their long-term strategies, and few actively and fully embrace the potential of data management techniques. This reluctance decreases a company’s ability to optimize inventories and enhance operational efficiencies of product offerings moving across supply chains. Given the increasing number of exogenous forces affecting the spine market, [e.g., ageing populations, vast and escalating healthcare costs, more stringent reimbursement policies, pricing pressures, tightening regulations, increasing competition, advancing technologies and heightened customer expectations], it seems reasonable to suggest that investing in and developing digital supply networks could be a logical step to enhance value agendas.Appropriate digitalization of supply chain planning and processing could help to: (i) reduce operational siloes, (ii) respond effectively to market disruptions, (iii) minimize the time, costs and risks associated with onboarding and collaborating with suppliers, (iv) deliver products and services that customers need, when they need them, where they need them at the lowest cost and (v) enable end-to-end supply chain visibility and transparency to facilitate gathering and analysing real-time intelligence to enhance efficiencies.
C suites and digital immigrants
Given that there are significant advantages in adopting digital technologies, why is the spine market lagging other industries in adopting such strategies to improve its supply chains to enhance its productivity and sustainability? A preponderance of digital immigrants among C suites could help to explain why some MedTech’s fail to grasp the full potential of digitalization strategies. Let us explain. According to research undertaken by Korn Ferry, a consulting firm, the average age of a C suite executive of the top 1,000 US organizations is ~57. Statista confirms this and reports that in 2018, the average age of CEOs in US at the time they were hired stood at 54 years, while the average age of CFOs when they were hired was 50. Since 2005 the average age for CEOs and CFOs has been trending upwards. To the extent that these data are indicative of MedTech’s, it seems reasonable to suggest that their C suite members: (i) would have completed their formative schooling before the digital era, and (ii) when they started their professional careers the digital age was just beginning. For example, in 1989 only 15% of US households owned a personal computer, <1% of the world's technologically stored information was in a digital format, and the World Wide Web did not become publicly available until 1991. In 1990, when the average C suite member would have been ~31, there were only ~12.5m cell phone subscribers worldwide; ~0.25% of the world’s population, and Internet users only amounted to ~2.5m; 0.05% of the world’s population. In 2002, when the average US C suite executive would have: (i) been ~37, (ii) completed their professional training and (iii) well into their careers, digital technologies were still relatively underdeveloped. For example, cell phone subscribers were only ~1.5bn; 19% of the world’s population, and Internet users were only ~631m; 11% of the world’s population.
|
|
This suggests that during C suite executive’s formative education and professional training, digital technologies were embryonic, and the Internet, mobile devices, social networking, big data, and computing clouds, had not yet transformed work practices and healthcare. Thus, a significant proportion of current executives of US MedTech’s could be digital Immigrants: people whose professional careers were influenced by analogue technologies, paper, and television, and they only acquired a familiarity with digital systems later in their careers when they were adults. This could affect their ability to appreciate the full potential of digital technologies and help to explain the relative reluctance of MedTech’s to digitize labour intensive, inefficient, linear supply chains.
|
|
Stringent regulation and digitization
This reluctance becomes more significant as regulators demand that MedTech’s employ more sophisticated digital strategies. Increasingly, people are being given spinal implants and devices, which cannot be subsequently removed. Patients rely on these to be safe and to perform as intended for their lifetime, and regulators are devising more stringent rules to ensure that this is the case. For example, the European Medical Device Regulation (MDR), which entered into force in May 2017, requires all medical devices sold in the EU-27 and Switzerland to be MDR approved. The EU-27 represents ~33% of the spine market’s global revenues. MDR governs the production and distribution of medical devices and their compliance. The regulation states that, “Medical device manufacturers are required to have systematic methods for examining their devices once available on the market, by systematically gathering, recording, and analysing data on safety and performance”. MDR expects all MedTech’s to have robust supply chains and the ability to conduct data-driven audits to trace manufacturing modifications to specific implants and devices and to prove the resolution of any problem that might arise. While tightening regulations increase approval costs and prolongs product development time, they also provide incentives for companies to enhance their digital supply networks.
Controlling the inventory-to-revenue ratio
A digital supply network can enhance an organization’s ability to manufacture products in optimum volumes and deliver them to the right customers at the right time. This could help to improve patient outcomes and lower costs. Also, digitalization assists enterprises to enhance the control of their inventory by improving planning, forecasting and management, which is critical given their relatively high inventory-to-revenue ratios.
|
|
Spine surgeons in hospitals need to have relevant implants and devices available in the operating room at the right time. Hospitals need to be able to locate products in their cabinets. Without appropriate digitalization strategies health professionals would need to spend time searching for devices that may or may not be used during an operation. This means increased costs, as high value surgical trays would flow through inefficient supply chains.
To reduce costs, hospitals and healthcare systems push the responsibility for inventory management onto their suppliers. This results in a range of different models, which tends to increase the risks to manufacturers. Currently, spine companies manage a range of different types of inventories, with a significant proportion of their product offerings being held either on consignment or by sales reps, who often spend time managing offerings on behalf of their customers. This increases the difficulty to accurately account for supply levels, location, ownership, and usage, which further complicates billing and replenishment and often leads to excess inventory and unnecessary costs.
|
|
A digital supply network can help to reduce these inefficiencies by eliminating waste and saving costs for all stakeholders. Typically, spine surgical sets contain several types of devices, plates, and screws, and usually are sold on consignment. Hospitals return these for re-provisioning often after only having used some of the items in the trays. To guarantee that sales-reps and hospitals have sufficient supplies, manufacturers maintain relatively large, consigned inventories, at significant costs, which impact on the rate of excess and obsolete inventories. A digital supply network effectively connects manufactures with their sales-reps and hospitals to reduce inefficiencies. Surgical trays are tagged with radio-frequency identification (RFID), so they can be effortlessly tracked by hospitals’ smart cabinets and by all other stakeholders. This allows: (i) hospitals to be billed as soon as a surgical tray, or a part of it, is removed, and the replenishment process started, and (ii) suppliers to reduce their consigned inventory, reduce their excess and obsolete inventory, and reduce their costs.
Ethical issues
We have broached some of the functional benefits and challenges of digitizing supply chains. Before closing, let us briefly draw attention to some ethical issues associated with digitization, which include increasing the challenges associated with data privacy, cybercrime, and the need to keep pace with new and rapidly developing technologies. This gives weight to environmental, social and governance (ESG) agendas, which are positioned to play an increasingly prominent role over the next five years and shall be discussed in a future Commentary.
Takeaways
We have made some suggestions about how common digitalization strategies could improve spine market supply chains and create added value for patients while delivering the highest sustainable returns for manufactures. We have also suggested reasons for the reluctance of some companies to employ digital strategies to transition from linear labour-intensive supply chains to supply networks. In response to the COVID-19 crisis, many organizations partially digitized their supply chains to sustain trading during what became a “new normal” of remote engagements. This suggested that digital enhancements could help spine companies improve their way of working, expand access to services, and deliver more valuable patient-clinician experiences. Dynamics within sectors usually change after a crisis. For example, following the 2008 economic crash, strong companies emerged stronger while weak companies emerged weaker. A defining difference between the strong and the weak was resilience: the ability not only to absorb shocks, but to use them to transform supply chains and enhance competitive advantage. Will spine companies emerge from the COVID-19 crisis stronger and extend their digitized supply networks or will they revert to their costly and inefficient labour-intensive linear supply chains? Keep an eye on the inventory-to-revenue ratio.
|
|
|
|
Comments