Tag

Tagged: commentary

Sponsored
  • Two Boston Consulting Group studies say MedTech innovation productivity is in decline
  • A history of strong growth and healthy margins render MedTechs slow to change their outdated business model
  • The MedTech sector is rapidly shifting from production to solutions
  • The dynamics of MedTechs' customer supply chain is changing significantly and MedTech manufacturers are no longer in control
  • Consolidation among buyers - hospitals and group purchasing organisations (GPO) - adds downward pressure on prices
  • Independent distributors have assumed marketing, customer support and education roles
  • GPOs have raised their fees and are struggling to change their model based on aggregate volume
  • Digitally savvy new entrants are reinventing how healthcare providers and suppliers work together
  • Amazon’s B2B Health Services is positioned to disrupt MedTechs, GPOs and distributors 
  • MedTech manufacturers need to enhance their digitization strategies to remain relevant
 
MedTech must digitize to remain relevant
 
MedTech companies need to accelerate their digital strategies and integrate digital solutions into their principal business plans if they are to maintain and enhance their position in an increasingly solution orientated healthcare ecosystem. With growing focus on healthcare value and outcomes and continued cost pressures, MedTechs need to get the most from their current portfolios to drive profitability. An area where significant improvements might be made in the short term is in MedTechs' customer facing supply chains. To achieve this, manufacturing companies need to make digitization and advanced analytics a central plank of their strategies.
 
In this Commentary
 
This Commentary describes the necessity for MedTechs to enhance their digitization strategies, which are increasingly relevant, as MedTech companies shift from production to solution orientated entities. In a previous Commentary we argued that MedTechs history of strong growth and healthy margins make them slow to change and implement digital strategies. Here we suggest that the business model, which served to accelerate MedTechs' financial success over the past decade is becoming less effective and device manufacturers need not only to generate value from the sale of their product offerings, but also from data their devices produce so they can create high quality affordable healthcare solutions. This we argue will require MedTechs developing  innovative strategies associated with significantly increasing their use of digital technology to enhance go-to-market activities, strengthen value propositions of products and services and streamline internal processes.
 
MedTechs operate with an outdated commercial model
 
Our discussion of digitization draws on two international benchmarking studies undertaken by the Boston Consulting Group (BCG). The first,  published in July 2013 and entitled, “Fixing the MedTech Commercial  Model: Still Deploying ‘Milkmen’ in a Megastore World” suggests that the high gross margins that MedTech companies enjoy, particularly in the US, hide unsustainable high costs and underdeveloped commercial skills. According to BCG the average MedTech company’s selling, general and administrative (SG&A) expenses - measured as a percentage of the cost of goods sold -  is 3.5 times higher than the average comparable technology company. The study concludes that MedTechs' outdated business model, dubbed the “milkman”, will have to change for companies to survive. 
 
BCG’s follow-up 2017 study
 
In 2017 BCG published a follow-up study entitled, “Moving Beyond the ‘Milkman’ Model in MedTech”, which surveyed some 6,000 employees and benchmarked financial and organizational data from 100 MedTech companies worldwide, including nine of the 10 largest companies in the sector. The study suggested that although there continued to be downward pressure on device prices, changes in buying processes and shrinking gross margins, few MedTech companies “have taken the bold moves required to create a leaner commercial model”.
 
According to the BCG’s 2017 study, “Overall, innovation productivity [in the MedTech sector] is in decline. In some product categories, low-cost competitors - including those from emerging markets - have grown rapidly and taken market share from established competitors. At the same time, purchasers are becoming more insistent on real-world evidence that premium medical devices create value by improving patient outcomes and reducing the total costs of care”. The growth and spread of value-based healthcare has shifted the basis of competition beyond products, “toward more comprehensive value propositions and solutions that address the entire patient pathway”. In this environment, MedTechs have no choice but to use data to deliver improved outcomes and a better customer experience for patients, healthcare providers and payers.
 
MedTech distributors increasing their market power and influence
 
Although supply chain costs tend to be MedTechs' second-highest expense after labour, companies  have been reluctant to employ digital strategies to reduce expenses and increase efficiencies. As a consequence, their customer supply chains tend to be labour intensive relationship driven with little effective sharing of data between different territories and sales teams. Customer relations are disaggregated with only modest attention paid to patients and payors and insufficient emphasis on systematically collecting, storing and analysing  data to support value outcomes.   
As MedTech manufacturers have been slow to develop strong and effective data strategies, so MedTech distributors have increased their bargaining power through M&As and internationalisation. Some distributors have even assumed marketing, customer support and education roles, while others have launched their own brands. MedTechs' response to these changes has been to increase their direct sales representatives. However, consolidation among buyers - hospitals and GPOs -  and the extra downward pressure this puts on prices, is likely to make it increasingly costly for MedTechs to sustain large permanent sales forces. 

You might also be interested in:

Who should lead MedTech?

 
Advantages of distributors but no way to accurately measure sales performance

Notwithstanding, the distributor model is still common with MedTechs and has been successful in many markets for a long time. Independent distributors are often used when producers have small product portfolios. In smaller markets, distributors are employed primarily to gain economies of scale as they can combine portfolios of multiple companies to create a critical mass opportunity and  obtain better and faster access to markets.
 
MedTechs have a history of investing in sales force effectiveness (SFE) typically to increase the productivity of sales representatives. Sales leaders have some indication that this pays-off through incremental revenue growth and profits, but they struggle to assess the true performance of such investments not least because SFE includes a broad range of activities and also it is almost impossible to obtain comparative competitor data.
 
Changing nature of GPOs
 
GPOs also have changed. Originally, they were designed in the early 20th century to bring value to hospitals and healthcare systems by aggregating demand and negotiating lower prices among suppliers. Recently however they have raised their fees, invested in data repositories and analytics and have been driving their models and market position beyond contracting to more holistic management of the supply chain dynamics. Notwithstanding, many GPOs are struggling to change their model based on aggregate volume and are losing purchasing volume amid increasing competition and shifting preferences.
 
New entrants
The changing nature of MedTechs' customer supply chain and purchasers increasingly becoming concerned about inflated GPOs' prices have provided an opportunity for data savvy new entrants such as OpenMarketsThe companyprovides healthcare supply chain software that stabilizes the equipment valuation and cost reduction and aims to reinvent how healthcare providers and suppliers work together to improve the way healthcare equipment is bought and sold. OpenMarkets’ enhanced data management systems allow providers to better understand what they need to buy and when. The company represents over 4,000 healthcare facilities and more that 125 equipment suppliers; and provides a platform for over 32,000 products, which on average sell for about 12% less than comparable offerings. In addition, OpenMarkets promotes cost efficiency and price transparency as well as stronger collaboration between providers and suppliers.
 
Amazon’s B2B Health Services
 
But potentially the biggest threat to MedTech manufacturers, GPOs and distributors  is Amazon’s B2B Health Services, which is putting even more pressure on MedTechs to rethink their traditional business models and to work differently with healthcare providers and consumers. With a supply chain in place, a history of disrupting established sectors from publishing to food and a US$966bn market cap, Amazon is well positioned to disrupt healthcare supply chain practices, including contracting. In its first year Amazon’s B2B purchasing venture generated more than US$1bn and introduced three business verticals: healthcare, education and government. Already, hundreds of thousands of medical products are available on Amazon Business, from hand sanitizers to biopsy forceps. According to Chris Holt, Amazon’s B2B Health Services program leader, “there is a needed shift from an old, inefficient supply chain model that runs on physical contracts with distributors and manufacturers to Amazon's marketplace model”.

If you look at the way a hospital system or a medical device company cuts purchase orders, identifies suppliers, shops for products, or negotiates terms and conditions, much of that has been constrained by what their information systems can do. I think that has really boxed in the way that companies’ function. Modern business and the millennials coming into the workplace, can’t operate in the old way,” says Holt.

You might also be interested in:

Is the digital transformation of MedTech companies a choice or a necessity?


Millennials are used to going to Amazon and quickly finding anything they need; even the most obscure items. According to Holt, “A real example is somebody who wants to find peanut butter that is gluten-free, non-GMO, organic, crunchy and in a certain size. And they want to find it in three to five clicks. That’s the mentality of millennial buyers at home, and they want to be able to do the same things at work. . . . The shift from offline traditional methods to online purchasing is very significant. It is our belief that the online channel is going to be the primary marketplace for even the most premium of medical devices in the future. That trend is already proven by data. So, we’ve created a dedicated team within Amazon Business to enable medical product suppliers to be visible and participate in that channel.
MedTechs fight back
 
According to the two BCG reports, MedTech companies can fight back by using digital technologies to strengthen and improve their go-to-market activities. This, according to BCG, would enhance MedTechs' connectivity with their customers and help them to learn more about their needs. Indeed, employing digitization to improve customer-facing activities could help standardise order, payment and after-sales service behaviour by defining and standardizing terms and conditions. This could provide the basis to help MedTechs increase their access to a range of customers - clinicians, institutions, insurers and patients - and assist them to tailor their engagements to the personal preferences of providers and purchasers. This could provide customers with access to product and service information at anytime, anywhere and could form the basis to implement broader digitalized distribution management improvements, which focus on value-based affordable healthcare in the face of escalating healthcare costs and variable patient outcomes.
 
Predictive models
 
Many companies use predictive-modelling tools to forecast demand and geo-analytics to speed delivery and reduce inventories. Online platforms provide customers with an easy way to order products and services, transparently follow their shipping status and return products when necessary. Barcodes and radio-frequency identification (RFID) chips, which use electromagnetic fields to automatically identify and track tags that contain electronically stored information attached to products, help customers track orders, request replenishments and manage consignment stock.
 
Back-office improvements
 
Further, the 2017 BCG study suggests that MedTechs only have made limited progress in improving their back-office operations. Many manufacturers  have more employees in their back offices than they do in their customer-facing functions and fail to leverage economies of scale. There is a significant opportunity for MedTechs to employ digital strategies to enhance the management of their back-office functions, including centralizing certain activities that are currently conducted in multiple individual countries.
 
Takeaway
 
For the past decade MedTech manufactures have been slow to transform their strategies and business models and still have been commercially successful. Some MedTech companies are incorporating digital capabilities into their products by connecting them to the Internet of Things (IoT), which potentially facilitate continuous disease monitoring and management. Notwithstanding, such efforts tend to be isolated endeavours - “one-offs” - and are not fully integrated into companies’ main strategies. This could run the risk of MedTech executives kidding themselves that they are embracing digitization while underinvesting in digital technologies. The two BCG studies represent a significant warning since digitization is positioned to bring a step-change to the MedTech sector, which potentially could wound successful manufacturers if they do not change.
view in full page
  • Each year unhealthy diets are linked to 11m deaths worldwide a global study concludes
  • Red and processed meat not only cause disease and premature death from chronic non-communicable diseases (NCD) but also put the planet at unnecessary risk
  • Evidence suggests that the health benefits of a Mediterranean diet reduces the risk of NCDs and is better for the Planet

Eat like Greeks, live healthier lives and save our planet

 
Findings of an international research project about the relationship between diet and chronic diseases are reported in a paper entitled, “Health effects of dietary risks in 195 countries 1990-2017. A systematic analysis for the Global Burden of Disease Study 2017”, which is published in the April 2019 edition of The Lancet. The paper suggests that millions of people throughout the world consume an unhealthy diet comprised of  too much processed meat, sodium and sugar and too little plant-based foods, such as fruits and vegetables, whole grains and nuts. This results in a significant increase in the prevalence of chronic non-communicable diseases (NCD) such as coronary heart disease, cancer and diabetes and  each year causes some 11m avoidable deaths worldwide - 22% of all adult deaths: 10m from cardiovascular disease, 913,000 from cancer and some 339,000 from type-2 diabetes. According to the paper’s authors, “A suboptimal diet is responsible for more deaths than any other risks globally, including tobacco smoking, highlighting the urgent need for improving human diet across nations”.
 
In this Commentary
 
This Commentary reviews evidence of recent large-scale epidemiology studies, which suggest that “you are what you eat”.  Not only do unhealthy diets cause ill health and premature death for millions, they also harm the environment and push the Earth beyond its planetary boundaries. All the studies we describe conclude that we know the answer to this vast and escalating health problem: eat like Greeks or indeed the Japanese. Notwithstanding, changing the way populations collectively eat is a massive challenge facing governments, healthcare systems and individuals.
 
The Global Burden of Disease project
 
The Lancet paper’s findings described above are based on the Global Burden of Disease (GBD) enterprise, which is one of the world’s largest scientific collaborative research projects, which was started in the early 1990s by the World Bank to measure the impact of disability and death from hundreds of diseases worldwide. Over the past two decades its work has grown, and the endeavour has become institutionalized at the World Health Organization (WHO). Today, the GBD project is an international consortium of more than 3,600 researchers, its findings are updated annually and they influence health policy throughout the world.
 
Red meat and bowel cancer
 
Findings of a more narrowly focussed but nonetheless significant study, published in the April 2019 edition of the International Journal of Epidemiology warn that red-processed meat consumption is linked with bowel cancer.  According to Tim Key, the study’s co-author, Professor of Epidemiology and Deputy Director at Oxford University's Cancer Epidemiology Unit, “Results strongly suggest that people who eat red and processed meat four or five times a week have a higher risk of developing bowel cancer than those who eat red and processed meat less than twice a week . . . . There’s substantial evidence that red and processed meat are linked to bowel cancer and the World Health Organization classifies processed meat as ‘carcinogenic’ and red meat as ‘probably carcinogenic’”. Notwithstanding, Key warns that, “Diet studies are problematic because those who take part often either forget what they have eaten or fail to tell the truth”. Key also suggests that, “Most previous research [on diet and cancer] looked at people in the 1990s or earlier and diets have changed significantly since then”.
 
Chronic non-communicable diseases
 
Chronic non-communicable diseases (NCD) are largely caused by humans and are therefore preventable. Notwithstanding, they account for more than 70% of all deaths globally and emergent NCDs pose significant systemic challenges for both nation states and individuals. Forty percent of all adults in the world are overweight and 1.4bn suffer from hypertension: both critical risk factors of NCDs. In 2016, 18m people died from cardiovascular disease (CVD), representing 31% of all global deaths. In the US an estimated 92m adults are living with CVD. By 2030, 44% of the US adult population is projected to have some form of CVD. There are around 7m people living with heart and circulatory disease in the UK. Worldwide some 0.5bn people have diabetes and in 2018 there were 17m new cases of cancer worldwide. Although there are some encouraging signs associated with the slowing of the prevalence rates of NCDs globally, prevalence of NCDs is expected to rise because of population growth and aging, misaligned healthcare policies and institutional inertia.
 
The paradox of food insecurity and obesity
 
Paradoxically, food scarcity and obesity are both forms of malnutrition and represent a vast and escalating burden on the worlds limited and diminishing resources. This is because food insecurity can contribute to people being overweight and obese. Nutritious fresh foods often tend to be expensive, so when household resources for food become scarce, people choose less expensive foods that are often high in calories and low in nutrients. As a result, adult obesity rates continue to rise each year, from 11.7% in 2012 to 13.2% in 2016. In 2017 the World Health Organization estimated that more than one in eight adults, or more than 672m people in the world, were obese and 2bn were classified as overweight. A report from the Center for Strategic and International Studies, a think-tank based in Washington DC, US, suggests that worldwide each year, "Malnutrition costs US$3.5trn, with overweight- and obesity-related NCDs, such as cardiovascular disease and type 2 diabetes, adding US$2trn”.
 
The EAT-Lancet Commission on Food, Planet and Health
 
Not only do unhealthy diets result in NCDs and premature death, but they also harm the environment. The dual aspects of unhealthy diets causing disease and harming the planet are described in research conducted by the EAT-Lancet Commission on Food, Planet and Healthand reported in the January 2019 edition of  The Lancet.
EAT is an independent non-profit organisation based in Oslo, Norway, dedicated to food-system reform, which collaborated with The Lancet. The report took 3-years to complete and brought together 37 world-renowned scientists from 16 countries with expertise in health, nutrition, environmental sustainability, food systems, economics and political governance; and tasked them with reaching a consensus that defines a sustainable “healthy planetary diet”, which the authors suggest approximates a Mediterranean diet, see below.

The EAT-Lancet research, financed by the Wellcome Trust,analysed the diets of people in 195 countries using survey data, as well as sales data and household expenditure data to estimate the impact of unhealthy diets on the risk of death and morbidity from NCDs. The Commission’s authors provide a comprehensive picture of the consumption of 15 dietary factors across nations and quantify the potential impact of suboptimal intake of each dietary component on NCD mortality and morbidity among 195 countries. Also, researchers calculate mortality related to other risk factors,such as smoking and drug use, at the global level.

 

You might also be interested in:

Obesity: is processed food the new tobacco?
 

Criticism of the EAT-Lancet Commission
 
The EAT-Lancet Commission’s report has its critics. One is the UK’s National Farmers’ Union whose Vice President Stuart Roberts said, “Scientific communities agree that red meat plays a vital role in a healthy, balanced diet as a rich source of essential nutrients, minerals, amino acids and protein. It is overly simplistic to target one food group for a significant reduction in consumption, and it ignores its medically accepted role as a key part of a healthy, balanced diet   . . . It is clear that climate change is one of the greatest challenges of our time and British farmers are continuing to take action. A combination of policies and practises will be needed to enable farmers to meet their ambitions, but we must not forget the impact of a changing climate on food production”.
 
Benefits of red meat
 
Roberts is right to point out that red meat has health benefits. Heme iron, which is found in red meat (also in poultry, seafood and fish) is easily absorbed by your body and is a significant source of your dietary iron. Red meat also supplies you with vitamin B12 and zinc. The former is required for red blood cell formation, neurological function and DNA synthesis, and the latter helps stimulate the activity of at least 100 different enzymes and helps to keep your immune system working effectively. Further, red meat provides protein, which helps to build your bones and muscles. People have been eating meat for millennia and have developed digestive systems well equipped to handle it.

Notwithstanding, the overwhelming majority of red meat consumed in the developed world today is processed: raised in a factory environment, fed grain-based feed and given growth-promoting hormones and antibiotics and some animals, after being slaughtered, are further treated with nitrates, preservatives and various chemicals. The findings of all three studies described above demonstrate the harm of eating too much red and processed meat and stress the health and environmental benefits of a Mediterranean diet.

 
An urgent challenge
 
According to the EAT-Lancet Commission’s authors, “Providing healthy diets from sustainable food systems is an urgent and pressing challenge”. As the global population continues to grow - projected to reach 10bn by 2050 - and become wealthier, there is expected to be a concomitant increase in unhealthy diets comprised of red meat, processed food and sugar. To address this vast and escalating challenge, populations will need to combine significant dietary changes with enhanced food production and reduced food waste.
 
The impact of food waste
 
Before broaching some of the challenges associated with changing the way we eat collectively let us briefly describe the magnitude and effect of food wastage. According to the United Nation’s (UN) 1.3bn tonnes of food are wasted every year, which is about 33% of the total produced. The cost of global food losses and waste amounts to roughly US$990bn and yet some 800m people worldwide do not get enough to eat and 2bn people are overweight.
 
Further, food wastage is estimated to release the equivalent of 3.3bn tonnes of CO2 into the atmosphere each year. The total volume of water used annually to produce food that is lost or wasted (250km³) is equivalent to three times the volume of Lake Geneva. Similarly, 1.4bn hectares of land - 28% of the world's agricultural area - is used to produce food that is lost or wasted. And agriculture is responsible for a majority of threats to at-risk plant and animal species tracked by the International Union for Conservation of Nature. 
 
Changing what we eat and how we produce food will save lives and the planet
 
According to Alan Dangour, Professor in Food and Nutrition for Global Health at the London School of Hygiene & Tropical Medicine (LSHTM), “The EAT-Lancet Commission’s analysis demonstrates that shifts in our diets can have enormous beneficial effects on health and also substantially reduce our impacts on the environment.  This significant ‘win-win’ for health and the environment is not a new finding, but this analysis, which for the first time defines environmental boundaries for the food system, is the most advanced ever conducted”.
 
In a similar vein, Tara Garnett, a contributor to the EAT-Lancet Commission and a principal investigator of another research project on the future of food, also suggests that there’s nothing new in the Commission’s report but its fundamental message is that, “We’re not going to address our environmental problems unless we address the problems caused by the food system and we’re not going to address the problems caused by the food system unless we shift the way we eat collectively and globally”.

 
Rebalancing unhealthy diets is a significant challenge
 
Changing how we eat collectively, which Garnett and others suggest is necessary to reduce NCDs and enhance our environment, is not going to be easy. This is because it would involve cutting by half our consumption of red meat, processed food and sugar, and doubling our consumption of vegetables, fruit, pulses and nuts. For people living in the US and UK it would be even more challenging because the EAT-Lancet Commission ranks the US 43rd and the UK 23rd for their respective unhealthy diets out of the 195 nations in its study. It is suggested that in order to adopt a healthy diet Americans would need to eat 84% less red meat and six times more beans and lentils, and British people would have to eat 77% less red meat and 15 times more nuts and seeds.

Countries with the lowest rates of diet-related deaths are Israel, France, Spain and Japan. The highest rates are reported to be found in Uzbekistan, Afghanistan and the Marshall Islands. According to the Commission’s authors a Mediterranean-type-diet, “is what we should all be eating if we are concerned about our health and that of the planet”: it lowers the incidences of heart disease, diabetes and cancer, enables more environmentally helpful use of land and reduces carbon emissions.

 
The Mediterranean diet
 
The Mediterranean diet has been around for millennia and tends to be more of a lifestyle than a diet. It entails significantly lower amounts of beef, dairy products, sugar, soft drinks, pastries and processed foods; higher amounts of fish, fruit, nuts and salads, and no pasta, French fries and pastries. Unlike fashionable commercial diets associated with the weight management market, the Mediterranean diet does not have a set of specific rules that focus on losing weight, but instead emphasises eating fresh food over a lifetime. Also, the Mediterranean diet has been well studied. Research suggests that it is associated with a reduced risk of heart disease and cardiovascular mortality because of its significantly lower amounts of oxidized low-density lipoprotein (LDL) cholesterol, (the "bad" cholesterol) which is more likely to build up deposits in your arteries. Other benefits include reduced incidence of cancer, Parkinson's and Alzheimer's diseases. Further, women who follow a Mediterranean diet have a reduced risk of breast cancer.
 
The PREDIMED study
 
Findings of a landmark clinical trial, entitled “Primary Prevention of Cardiovascular Disease with a Mediterranean Diet”, was published in the June 2013 edition of the New England Journal of Medicine (NEJM). Popularly known as the PREDIMED study (Prevencion con Dieta Mediterranea), it tested the impact of two Mediterranean diets on cardiovascular risk. The first included a Mediterranean diet plus 30 grams of mixed nuts per day and the second was a Mediterranean diet plus at least four tablespoons a day of extra-virgin olive oil. The two diets were then compared to a low-fat diet, which is popularly advocated and pursued in the US and UK and among other developed nations and discourages the consumption of any high-fat items such as butter, cheese, oil, meats and pastries.
 
The low-fat diet
 
In the 1960s low-fat diets as opposed to high-fat, high-cholesterol diets were considered to promote heart health. By the late 1980s and early 1990s the low-fat diet was advocated by doctors, policy makers, the food industry and the media although there was no hard evidence to demonstrate it prevented heart disease and promoted weight loss. Notwithstanding, the low-fat-diet became an important part of the large and rapidly growing global weight management market, which is valued at some US$169bn and projected to grow at a CAGR of 2.4% and reach a value US$279bn by 2023. Interestingly, in the 80s and 90s, as the low-fat diet became an institution in the US and UK so the prevalence of overweight and obesity increased. Only recently has the low-fat diet been challenged as scientific evidence about fats increased.
 
A significant study with some methodological challenges
 
The PREDIMED study involved 7,447 people between 55 and 80 who were free from heart disease, came from 11 study centres across Spain and were randomly assigned to one of the three diets for five years. Findings suggested that the Mediterranean diet significantly reduced the risk of heart attack, stroke and cardio-vascular mortality compared to the low-fat diet. However, researchers discovered flaws with the study’s methodology and withdraw their findings. Most significantly, not all participants were randomly assigned to their diet and this could have influenced their findings.
 
Revised study of the Mediterranean diet
 
Researchers adjusted their methodology for its "irregularities in the randomization procedures" and published “new” findings in the June 2018 edition of the New England Journal of Medicine (NEJM), which confirmed the health benefits of a Mediterranean diet for adults at high risk for heart disease and found that the Mediterranean diet, plus olive oil or nuts, reduced risk for heart events by 30% compared to a low-fat diet. Lead author Miguel Ángel Martínez-González suggested that only about 10% of participants were affected in their earlier study reported in 2013, and their 2018 analysis made researchers, "More convinced than ever of the robustness of the protection by the Mediterranean diet against cardiovascular disease”. According to Jeffrey Drazen, editor-in-chief of the NEJM, "Medical professionals and their patients can use the republished information with confidence". While reaction to the study’s initial findings was disappointing, experts are encouraged by the adjusted findings, which confirm the heart-health benefits of a Mediterranean diet, particularly in adults at high risk for heart disease. Notwithstanding, experts emphasise the significance of sustaining a healthy diet over time.
  
The health benefits of the Japanese diet
 
The Mediterranean diet is not the only diet, which has proven to have significant health benefits. The Japanese diet, which is low in calories and saturated fat and high in nutrients, especially phytonutrients such as antioxidants and flavonoids, found in different coloured vegetables, also has considerable health benefits. Findings of two studies; one published in the April 2017 edition of PLOS.ONE, and another published in the March 2016 edition of the British Medical Journal demonstrate that, closer adherence to a Japanese diet resulted in a significantly lower risk of death from NCDs and in particular from cardiovascular disease or stroke. Japan has the highest life expectancy of any country: 90 years for women and 84 for men. Okinawa, in southernmost Japan, has the highest number of centenarians in the world as well as the lowest risk of age-related diseases such as cancer and heart disease. There are nearly 800 centenarians in Okinawa, which has a population of 1,368,000. The diet of the Okinawan people has been little influenced by the dietary changes influenced by western culture, which also have been seen in more urban Japan.
 
Takeaways
 
All the research findings we describe in this Commentary confirm the adage that, “You are what you eat”. Nutrients from the food you eat provide support for all the cells in your body, which have different “shelf lives”. For example, your skin cells live for about a month and your red blood cells for about four months. So, your body is constantly regenerating new cells to replace those that have “expired”. The health of your new cells is partly determined by how well you have been eating. A diet high on processed red meat and low on nutrients does not help in this regeneration process. But a nutrient rich, whole food diet can help to build your cells so that they work better to help you recover from common illnesses and the wear-and-tear of everyday life and make you less susceptible to disease.
 
Although our concern about healthy eating has intensified in recent years, the phrase, “you are what you eat” is not new. In 1826 Anthelme Brillat-Savarin wrote in Physiologie du Gout, ou Meditations de Gastronomie Transcendante, "Dis-moi ce que tu manges, je te dirai ce que tu es[Tell me what you eat, and I will tell you what you are]. However, the phrase did not emerge in English until the 1920s when nutritionist Victor Lindlahr, who believed that food controls health, developed the Catabolic Diet. According to Lindlahr, "Ninety per cent of the diseases known to man are caused by cheap foodstuffs. You are what you eat". And in 1942, he published a book entitled, “You Are What You Eat: how to win and keep health with diet”. Eat like the Greeks, live healthier lives and save our planet.
view in full page
 
Devi Shetty’s model for affordable healthcare


On the 26th March 2019 Bloomberg Businessweek published an article entitled, "The World’s Cheapest Hospital has to Get Even Cheaper”, which describes one of India’s largest private hospital chain's - Narayana Health - response to Modicare, a signature initiative by Prime Minister Narendra Modi to provide basic healthcare for 500m of India’s poorest.
 
Devi Shetty, a world-renowned cardiac surgeon and chairman of Narayana Health, is up for the task. Since Shetty founded Narayana in 2000 it has grown to become a large multi-speciality hospital chain, comprising 31 state-of-the-art tertiary hospitals across 19 cities, employing 16,000 and each year treating over 2.5m patients across more than 30 medical specialities. Shetty’s mission is to provide high quality, affordable healthcare services to the broader population in India and he is convinced that quality and low-cost healthcare are not mutually exclusive. In conjunction with the state of Karnataka, Shetty has created a health insurance plan, which has enrolled some 3m poor people at an annual premium of about US$2.6. More than half of Narayana’s cardiac operations are performed on patients too poor to afford the full cost. In addition to the insurance scheme free or subsidized inpatient care is achieved through philanthropy and a cross-subsidy model, in which higher-income patients pay more for nonclinical amenities, such as private recovery rooms. Since the total charges are still far below the cost of comparable services at other private Indian hospitals, Narayana Health remains an attractive option for such consumers. Narayana Health’s business model is sustainable because of its ability to attract so many patients who can pay full price.  The Wall Street Journal has dubbed Shetty, The Henry Ford of Heart Surgery because he applies assembly line concepts to surgery in order to optimize productivity, minimize costs and leverage economies of scale. Because of these innovations the average cost of open-heart surgery, as reported by Narayana Health, is less than US$2,000. The same procedure at a US research hospital typically costs more than US$100,000.
 
Since 2012 HealthPad has worked closely with Devi Shetty. We published our first Commentary about Narayana Health and Devi Shetty’s model for affordable quality healthcare in 2013 and in subsequent years published two more. Shetty and his fellow senior surgeons have contributed over 700 videos to HealthPad’s  content library, which address FAQs across 11 clinical pathways. Further, Narayana’s clinicians have featured in HealthPad Commentaries on Chronic obstructive pulmonary disease (COPD),  Diabetes and Kidney Disease and Cardiovascular Disease.  Because of the large and growing international interest in Shetty’s alternative model for affordable healthcare we re-publish lightly edited versions of HealthPad’s three Commentaries about Narayana Health.

 



Will Devi Shetty have a major influence on global healthcare?
February 3rd, 2016


Devi Shetty’s hospital of the future
October 1st, 2014


The UK’s NHS loss is global healthcare’s gain
August 14th, 2013
view in full page
First published on 14th August 2013
 

The UK’s NHS loss is global healthcare’s gain

 
In 2011 Devi Shetty, an Indian doctor, received the coveted business process innovation award in London from The Economist for his contribution to global healthcare. Trained as a cardiac surgeon in the UK, Shetty returned to India and started a hospital in Bengaluru in 2000. Today, Shetty is on the cusp of changing healthcare in the 21st century.
 
Shetty’s no-frills hospital chain
 
In 2012 Shetty launched the first in a chain of no-frills hospitals: a 200-bed single-storey clinic in Mysore, India. Built in 10 months for US$7m, it charges only US$800 for open heart surgery. Shetty rejected the multi-storey hospital model, because it requires costly foundations, steel reinforcements, lifts and complex fire and safety equipment. Much of the Mysore building was pre-fabricated. Its five operating theatres and intensive care units are the only air-conditioned places and families are encouraged to provide supplementary care for patients.
 
Shetty’s no-frills hospital chain owes its existence to his pioneering hospital in Bengaluru.
 
Shetty’s medical city in Bengaluru
 
In 2000 Shetty started Narayana Hrudayalaya, a specialist hospital for cardiac surgery, which today performs the highest number of heart surgeries in the world for any one hospital: 7,000 annually and does not compromise on quality. “We are only technicians,”  says Shetty. ”We realised that as you do more surgical procedures, your results get better, and your costs go downIn the US the average cardiac surgeon does about 2,000 surgeries in his or her professional lifetime. We have surgeons who have done more than 3,000 surgeries and they’re only in their 30s . . . imagine the expertise that they have, at that young age.
 
Medicines and associated hospital costs in India are significantly lower than in the West, but Narayana offers Indian patients value for money. The average price for open heart surgery in Narayana is around US$2,000, compared to US$5,000 in the average private Indian hospital and $20,000 to $100,000 in a US hospital.
 
Shortly after starting his Bengaluru cardiac centre, Shetty acquired a 35-acre site next door and built a 1,400-bed cancer hospital and a 300-bed eye hospital and created Narayana Hrudayalaya Medical City, which has 3,000 beds in Bengaluru and is run at near to full capacity. In total Narayana has some 7,000 beds in a number of clinics and hospitals throughout India, and plans to expand to 50,000 beds in the next five years.
 
Tele-medicine
 
In association with India’s Space Research Organization, Sherry's Bengaluru hospital runs one of the world’s largest tele-cardiology programs, which reaches 100 facilities throughout India, over 50 across Africa and Narayana’s doctors have treated some 70,000 patients remotely. Narayana Health also disperses 5,000 kidney dialysis machines, which makes the company India’s largest kidney-care provider.
 
Health insurance
 
With the state of Karnataka, Shetty has created a health insurance plan, which has enrolled some 3m poor people at an annual premium of about US$2.6. Last year, about 60% of Narayana Hrudayalaya cardiac operations were performed on patients too poor to afford the full cost.
 
Shetty however is not a charity. His hospitals treat a cross section of patients at variable rates but refuse to turn away anyone who cannot pay. “Charity,”  he says, “is not scalable. Good healthcare depends on good business.”  Shetty’s hospital group earns an after-tax profit of 8%, slightly above the 6.9% average for a US hospital.
 
 
Health City Cayman Islands
 
Shetty has now turned his attention outside of India and is engaged in a joint venture with the government of the Cayman Islands and a group of American institutional investors, to construct and operate a hospital in Grand Cayman to capture share from the North and South American healthcare markets.
 
The first phase, a 140-bed tertiary care facility for cardiac surgery, cardiology and orthopaedics, was opened in 2014 and benefits from the cost-effective healthcare procedures honed by Shetty over the past decade. By 2020, the Cayman enterprise, which also will have a medical university and an assisted-care living community, is projected to expand into a 2,000-bed Joint Commission International-accredited Health City providing care in all major specialties.
 
Super-size hospitals
 
At a time when the global healthcare debate is emphasising community based preventative strategies, Shetty’s vision is, “affordable healthcare for everyone in super-size hospitalsToday healthcare has got phenomenal services to offer,” he says. Almost every disease can be cured and if you can't cure patients, you can give them meaningful lives.” Shetty is driven by the fact that a century after heart surgery was developed only 10% of the world’s population can afford it. Each year, India alone needs 2.5m heart operations and yet there are only 90,000 performed.
 
"Current regulatory structures, policies and business strategies [for healthcare] are wrong,” says Shetty, If they were right, we should have reached 90% of the world's population." Recently, he shocked a UK audience of health providers by suggesting that it would be better if England only had three centres for cardiac surgery rather than 22. 
 
The Henry Ford of heart surgery
 
Sir Bruce Keogh, the UK’s former National Medical Director of the NHS Commissioning Board, once suggested that healthcare in England should become more like retail. Shetty thinks like a retailer, views patients as “customers” and has employed mass production techniques used in the early 20th century to automate the American car industry. Known as, “the Henry Ford of heart surgery”, Shetty has demonstrated that high volume complex surgeries mean better outcomes and lower costs. Similar to what Henry Ford did for the auto industry, Shetty has disaggregated clinical procedures into a number of discrete, standardized, unambiguous units, which can be learnt, practiced and repeated. His methods have successfully reduced hospital costs, increased efficiency, enhanced the quality of care and eliminated clinical mistakes. According to Shetty, “Healthcare has huge variation in procedures, outcomes and costs . . . It is the lack of standardization that contributes to hospital mistakes, high costs and low quality of care”.
 
Change is inevitable
 
Shetty is convinced that the dearth of health workers worldwide will force change and increase the use of emerging healthcare technologies. An advocate for open technological systems, he says, “In five years a computer will make more accurate diagnoses than doctors. In 10-years it will be mandatory for a doctor to get a second opinion from a computer before starting treatment.
 
Takeaways
 
Not only will Shetty’s Health City Cayman Islands be a lower cost alternative for North and South American patients, it will demonstrate how over-priced and inefficient hospitals in the West are. However, it is not altogether clear whether Shetty’s formula for low-cost high-quality surgical procedures will be effective outside of India. This is mainly because high quality ancillary services associated with complex surgeries, which are relatively inexpensive in India, tend to be patchy and significantly more costly outside of India. Notwithstanding, Shetty is determined to provide the world with a model of affordable healthcare.

 

 

view in full page
  • Diabulimia is when people with type-1 diabetes (T1DM) ration their insulin to lose weight
  • People with T1DM who reduce their insulin lose weight but increase their likelihood of serious complications and death
  • Diabulimia is neither an official medical nor psychiatric disease state but its prevalence is relatively high and increasing
  • Diabulimia is challenging to diagnose partly because it is a portmanteau of 2 separate conditions and people with the condition often keep the bulimic aspect secret
  • Recently research into the condition and a clinic dedicated to diabetes and eating disorders have been launched in London
  • These initiatives are expected to increase our understanding of diabulimia, improve screening and treatment options and provide integrated medical and psychiatric support for people with the condition

Diabulimia - the world's most dangerous eating disorder

In January 2019 the UK’s National Institute for Health Research (NIHR) awarded clinician scientist Marietta Stadler, from King's College Hospital, London, £1.2m to fund research into diabulimia, an eating disorder in which people living with T1DM deliberately and regularly restrict their prescribed insulin dosage for the purpose of weight loss.

Diabulimia is a media-coined term and only recently has it been considered as a separate disease state although it is still not formally recognised as such. We start this Commentary by briefly describing some aspects of the history of the condition.
  • On 27th September 2011 Sian, the 24-year-old daughter of UK parliamentarian George Howarth, died from complications related to T1DM. As a teenager Sian had not kept up with her medication, she had missed appointments with doctors and dieticians, and was suffering from depression as a result of the condition. Sian had also developed neuropathy, which is damage to the nerves caused by T1DM. Since his daughter’s death Howarth has campaigned to raise awareness of diabulimia.
  • In 2012 Maryjeanne Hunt published a book entitled Eating to Lose: Healing from a Life of Diabulimia, in which she describes her struggle with the condition.
  • On 13th February 2013 the UK’s South London and Maudsley NHS Trust (SLaM) published an   article entitled, The Growing Problem of Diabulimia. According to Janet Treasure, Professor of Psychiatry and Director of Eating Disorder Services at SLaM, “it is estimated that 40% of T1DM females aged between 15-30 regularly omit insulin for weight control”.
  • In the July 2014 edition of Clinical Nursing Studies, a review paper concluded that diabulimia, “is not often recognized by primary healthcare providers or members of the individual’s family. If diabulimia is detected early, interventions can be implemented to minimize the risk of early morbidity and mortality”.
  • In January 2017 the UK's first diabetes and eating disorder out-patient service began working with young women living with diabulimia. Until then people in the UK with diabetes and eating disorders have been able to seek help for one or the other of the conditions, but never together. At the time of the clinic’s launch, Jonathan Valabhji, NHS England’s national clinical director for diabetes and obesity, said: “As a diabetes clinician I’ve seen first-hand the devastating impact that this condition can have on people and their families, and so these services are an important step forward in the recognition of diabulimia”.
  • In early 2017 the UK’s National Institute of Health and Care Excellence (NICE) upgraded its guidelines and quality standards for T1DM to feature psychological support related to the increased prevalence of eating disorders and the potential for insulin omission in people with T1DM.
  • On 4 August 2017, 27-year-old teacher Megan Davison, who had diabulimia, committed suicide. "In the absence of the help she needed, she couldn't see any way of carrying on," said her mother.
  • In September 2017, BBC Three aired a documentary entitled Diabulimia: The World's Most Dangerous Eating Disorder.
  • On 2nd November 2017, the Scottish Parliament debated a motion on raising public awareness of diabulimia.
 
Diabulimia 
 
Diabulimia merges the words ‘diabetes’ and ‘bulimia’. Diabetes is a disease in which your body’s ability to produce or respond to the hormone insulin is impaired, resulting in abnormal metabolism of carbohydrates and elevated levels of glucose in your blood. Bulimia is an eating disorder where you binge on food and then purge it by vomiting, laxatives, diuretics, exercise or other purging behaviours to prevent weight gain. Diabulimia is a term coined by the media and used by the general public. Although not well-known, diabulimia is a dangerous eating disorder among people with T1DM and describes the deliberate and regular administration of insufficient insulin to maintain glycaemic control for the purpose of causing weight loss by ‘purging’ calories via excess glucose in the urine. While not formally recognised either as a medical term or as a mental health condition in its own right, the Diagnostic Statistical Manual of Mental Disorders(DSM-5),   considers that insulin omission in order to lose weight is a clinical feature of anorexia nervosa and bulimia. Diabulimia has also been recognised in the 2017 UK’s National Institute of Health and Care Excellence (NICE) guidance for eating disorders.
  
Insulin restriction and T1DM

To understand why insulin reduction causes weight loss, it helps to understand T1DM, which is a heterogeneous chronic lifetime disorder for which there is no known cure. T1DM is characterized by the destruction of pancreatic beta cells, culminating in absolute insulin deficiency and accounts for between five and 10% of the total cases of diabetes worldwide. In 2014 there were an estimated 422m people diagnosed with diabetes worldwide. The global prevalence of diabetes among adults over 18 has risen from 4.7% in 1980 to 8.5% in 2014.
Typically, T1DM has an early onset, but can occur at any age. It requires regular daily attention, which for children or adolescents can be daunting. The nutritional anomalies associated with the condition have important consequences (see below) and can be a physical and emotional struggle. To be diagnosed with T1DM represents a hard experience that requires subsequent psychological adaptation. Unfortunately, this often does not occur and can be followed by frustration and the non-acceptance of the disease.

T1DM occurs when your immune system attacks cells in your pancreas that make insulin and renders the pancreas unable to produce the hormone, which is needed to allow glucose (a sugar that circulates in your blood) to enter your cells to produce energy. When you consume food, your body converts it into glucose, which enters your bloodstream. Insulin helps to turn glucose into energy. Without a properly functioning insulin system, your body cannot break down glucose so it stays in your bloodstream and can be dangerous.

You might also like:

Drunkorexia: a devastating and costly growing condition

 
If you are a person living with T1DM you must regularly check your blood glucose levels. Based on these levels and what you plan to eat, you must give yourself insulin. If you either fail to do so, or under-dose, your body cannot absorb glucose and it accumulates in your blood, a condition known as ‘hyperglycaemia’, in which case, your body attempts to compensate for the excess glucose, goes into starvation mode and starts to break down muscle and fat, releasing acids called ketones. The ketones build up, leading to diabetic ketoacidosis (DKA), which can be fatal.
 
Epidemiology

Data from large global epidemiological studies of T1DM reported in a paper published in the February 2014 edition of Diabetes Research and Clinical Practice, suggest that there are 0.5m children aged
It is estimated that as many as 11% of adolescent women with T1DM meet the criteria for a full-syndrome eating disorder. This is significant when compared to the incidence of eating disorders among women in general. It is estimated that between 0.5% and 3.7% of women suffer from anorexia nervosa, and an estimated 1.1% to 4.2% of women have bulimia in their lifetime. A paper in the June 2000 edition of the British Medical Journal, suggests that adolescent females with T1DM are 2.4 times more likely to develop eating disorders than peers of the same age without diabetes, and 1.9 times more likely to display symptoms of an eating disorder that does not meet the full diagnostic criteria. Other studies show that about 35% of females with T1DM have diabulimia.

 
Signs and symptoms

Diabulimia is challenging to diagnose and many primary care doctors and endocrinologists who treat people with T1DM may not recognize diabulimia among their patient population. This is partly because diabulimia is not an officially recognised disease state, partly because eating disorders and diabetes tend to be treated separately by different specialists, and partly because people with diabulimia may be ashamed and reluctant to seek help.

The most obvious sign of diabulimia is weight loss. Another common sign is poor blood-glucose control, as measured by elevated A1c levels, particularly if the person has a prior history of good control. Health professionals may wish to attune themselves to the classic signs of diabetes and the common symptoms of eating disorders. The former includes excessive urination, extreme thirst, constant hunger and fatigue. The latter includes dietary restrictions and heightened concerns about weight and body image.

 
Manipulating insulin to control weight
 
At the time of diagnosis with T1DM people have often lost a significant amount of weight. Regular doses of insulin are essential for controlling blood sugar levels and successfully managing the condition. However, a common side effect of such treatment is weight gain, and this can lead to a vicious circle. Insulin therapy can lead to weight gain; increasing weight may require increasing dosages of insulin to control blood glucose, which can lead to increased hunger and dietary intake, which can increase weight and enhanced concerns about body image.

Deliberately not taking or misusing insulin to cause weight loss is a purging behaviour that is uniquely available to individuals with T1DM. Weight loss can be achieved by decreasing the prescribed dose of insulin, omitting insulin entirely, delaying the appropriate dose, or manipulating the insulin itself to render it inactive. But when you have T1DM, you need insulin to live. Without it, you may lose weight, but more significantly you can lose your sight, harm your kidneys, damage the nerves in your feet and threaten your life.

 
Diets, social media and the thin ideal
 
The management of T1DM is further complicated because it also entails the careful selection of food, eating precise portions and the constant monitoring of carbohydrates. Because of the early onset of T1DM and the ubiquitous use of social media among children and adolescents, which often propagate the “thin ideal”; it seems reasonable to suggest that children and adolescents with T1DM are inherently more prone to issues revolving around food. Thus, in addition to manipulating insulin many people with T1DM commonly restrict their food intake, engage in bingeing and purging, misuse laxatives and adhere to overly strict exercise regimens to overcome body dissatisfaction.   
 
In the US the cost of insulin results in rationing dosages
 
It seems worth mentioning that a significant proportion of people with T1DM in the US appear to be forced into a similar state of diabulimia because of the high cost of insulin, lack of medical insurance cover (about 10% of the US population [33m] do not have healthcare insurance), and relatively high levels of co-payments for medical insurance. These aspects of the American healthcare ecosystem tend to drive a percentage of people with T1DM to reduce or ration their prescribed dosage of insulin, and their disease state then assumes similar manifestations to diabulimia.

According to research findings published in the June 2018 edition of Diabetes Care, about 27% of the 1.25m people in the US with T1DM say that affording insulin has impacted their daily life. For people with T1DM, “access to insulin is literally a matter of life and death. The average list price of insulin has skyrocketed in recent years, nearly tripling between 2002 and 2013 . . . . [and]  . . . individuals with diabetes are often forced to choose between purchasing their medications or paying for other necessities, exposing them to serious short- and long-term health consequences,” say the authors.

According to T1International, a charity which advocates affordable and accessible diabetes care, "People (in the US) spend most of their life in fear of losing their insurance, of running out of insulin and the cost going up, or of having to stay in terrible jobs or relationships to ensure they keep their health insurance coverage. . . . In the  worst case, folks are rationing insulin which has led to many reported deaths and excruciating complications."
 
Research aimed at improve treatment
 
Given the extent of diabulimia and the significant medical risks associated with the condition, more clinical and technological research aimed to improve its treatment is critical to the future health of this at-risk population. Stadler’s research referred in the opening paragraph of this Commentary is significant. Interestingly, the National Institute for Health Research only supports projects which potentially have a, "clear benefit to patients and the public". Stadler’s research is expected to take five years, aims to provide a better understanding of diabulimia and devise a 12-module treatment plan for people with the condition.
 
Clinic for people with diabulimia
 
People with diabulimia could only seek professional help for their eating disorder and T1DM separately, but never together: that was until January 2017 when an out-patients’ clinic opened in London specifically for people with T1DM and eating disorders. The clinic is led by Khalida Ismail, Professor of Psychiatry and Medicine at King's College, London and the lead psychiatrist for diabetes at King's Health Partners, London, which is comprised of King's College London, Guy's and St Thomas' NHS Foundation Trust, King's College Hospital NHS Foundation Trust and South London and Maudsley NHS Foundation Trust. Ismail wants to unite psychiatrists and diabetes experts. "They never meet patients together and it's an inefficient use of current resources . . . . we'd actually be saving money by joining up services," she says.
 
Takeaways
 
Diabulimia represents one of the most complex patient problems to be treated both medically and psychologically. Standard treatments for eating disorders are not usually appropriate for cases of diabulimia. Treatment for eating disorders tend to involve removing the focus on food, which is contrary to best practice for the management of T1DM. It is important for clinicians and researchers to better understand risk factors, screening tools and treatment options for diabulimia. Also, there needs to be better access to diabetes specialist psychological services that can provide the integrated support that people with diabulimia need. The London clinic for diabetes and  eating disorders and Stadler’s research are a good start.
view in full page
  • UK parliamentarians are proposing to raise the smoking age to 21
  • Tobacco smoking is the biggest preventable cause of  disease disability and death
  • People that start smoking in their teens are most likely to continue the habit into adulthood
  • Quitting smoking is more difficult than quitting addiction to opiates
  • Smoking harms every organ in your body and causes 90% of deaths from lung cancer
  • Smoking related illnesses cost healthcare systems billions
  • Some UK policy makers are denying smokers healthcare treatment
  • UK smokers may cover the medical cost of their habit in taxes
  • How should we and how do we treat smokers?

Stop teenagers smoking to reduce disease morbidity and mortality and save billions

An influential cross-party group of UK parliamentarians backed by the charity Action on Smoking and Health, (ASH) and 16 other health and welfare organisations, including the British Medical Association, Cancer Research UK, the Royal College of Physicians and the British Heart Foundation, has proposed raising the minimum smoking age to 21 and introducing a levy on big tobacco companies to fund measures to encourage people to quit smoking and to prevent youngsters taking up the habit.

Although the prevalence of smoking has declined dramatically in the UK over the past five decades, the decline has stalled, and policy makers are keen to stop teenagers from starting to smoke. This is because if you begin smoking in your teens you are more likely to continue the habit into adulthood when it becomes difficult to quit, and smoking related illnesses cause morbidity and mortality for millions and cost healthcare systems billions.
 
Further, it is becoming increasingly common among some policy makers to suggest that smokers should be denied healthcare because they represent an unnecessary and self-inflicted higher burden on healthcare systems due to the illnesses that they pick up as a result of their smoking habit. According to ASH, smoking costs NHS England approximately £2.7bn a year for treating smoking related diseases. Although high, it seems likely that smokers cover the cost of treating their “self-inflicted” illnesses by taxes.

 
Teenage smoking
 
The UK's proposal to raise the smoking age is likely to be well received because the British government wants to reduce the prevalence of 15-year-olds who regularly smoke from 8% to 3% or less and reduce smoking among adults from 15.5% to 12% or less by the end of 2022. A 2009 report by the Public Health Research Consortium entitled A Review of Young People and Smoking in England, provides a comprehensive review of smoking and young people and suggests, “Most young people start experimenting with smoking in their early to mid-teens, but smoking prevalence and consumption increases until the mid-twenties”.
 
Teenage smoking increases DNA damage
 
Nearly 90% of adult cigarette smokers in the UK first tried cigarettes as teenagers. The continued prevalence of smoking by children and adolescents represents a significant public health challenge. Studies at the molecular and cellular levels suggest that early exposure to tobacco smoking enhances DNA damage and is associated with the induction of DNA alterations in specific chromosomal regions. Chemicals in cigarette smoke enter your blood stream and can then affect your entire body. Adolescence is recognised to be the period of greatest development for your lungs, and therefore it is reasonable to assume that adolescence constitute a "critical period" in which tobacco carcinogens can induce fields of genetic alterations that make the early smoker more susceptible to the damaging effects of continued smoking.

In addition to raising the smoking age, the UK policy proposal suggests that each tobacco manufacturer should pay an annual fee based on the volume of cigarettes it sells in the UK, potentially raising hundreds of millions for the government. Deborah Arnott, chief executive of ASH, said: “Legislation to strictly regulate smoking used to be considered controversial and extreme by all mainstream political parties but governments now have confidence that tough tobacco regulation both delivers results, and, crucially, has widespread cross-party and public support.” The tobacco industry has fought hard to resist successive British governments from introducing legislation that would reduce its profits.

 
Tobacco 21

The proposed British policy is not new. In March 2015 the US Institute of Medicine published a research report entitled, Health Implications of Raising the Minimum Age for Purchasing Tobacco Products, which suggests that raising the legal sale age from 18 to 21, known in the US as “Tobacco 21”, would significantly reduce youth tobacco use and prevent adolescents from starting to smoke. Notably, the report estimated that,  “there would be a 25% reduction in smoking initiation among 15-to-17-year-olds if the age to purchase tobacco were raised to 21”.
 
According to a paper by the US Centers for Disease Control and Prevention (CDC) published in the July 2015 edition of the  American Journal of Preventive Medicine, three out of four American adults, including seven in ten cigarette smokers, favour raising the minimum age of sale for all tobacco products to 21. Notwithstanding, 11% of adults strongly opposed making 21 the legal age of sale, while 14% somewhat opposed such measures. Today, five American states have raised their minimum tobacco sale age to 21 and more than 425 communities in 23 other states have adopted a Tobacco 21 policy.

 
Cigarette smoking harms every organ in your body

According to the 2014 US Surgeon General’s Report entitled, The Health Consequences of Smoking: 50 Years of Progressthe century-long epidemic of cigarette smoking has caused an enormous avoidable public health tragedy. Since the first Surgeon General’s report in 1964 more than 20m premature deaths in the US can be attributed to cigarette smoking”.
Although smokers today tend to smoke fewer cigarettes than in the past, this does not necessarily translate into reduced harm: biochemical indices of smoking intensity have not shown commensurate declines. Tobacco smoking harms nearly every organ of your body and is the biggest preventable cause of disease, disability and death. It causes so many different types of cancer including  cancers of the lung, oesophagus, larynx, mouth, throat, kidney, bladder, liver, pancreas, stomach, cervix, colon and rectum, anus, as well as acute myeloid leukaemia. Each year smoking is responsible for some 81,700 and 480,000 deaths in the UK and US respectively.

You might also like:
 
In wealthy countries such as Britain and the US, smoking cigarettes kills more people than alcohol, car accidents, HIV, guns, and illegal drugs combined. An estimated 36% of all respiratory disease deaths, 30% of all cancer deaths and 14% of all circulatory disease deaths are attributable to smoking. This figure rises to 87% of deaths from chronic obstructive pulmonary disease (COPD) and 82% of deaths from lung, bronchus and trachea cancer.
 
Nicotine, carbon monoxide and tar

Some experts suggest that it may be harder to stop smoking than to stop using cocaine or opiates  such as heroin. About two out of three smokers say they want to quit and each year about half of all cigarette smokers in developed economies try to quit, but few succeed even with professional help. This is because smokers become physically addicted to nicotine.
 
Tobacco smoke contains a deadly mix of more than 7,000 chemicals; hundreds are harmful and about 70 can cause cancer. However, it is the chemical nicotine, which is the addictive agent, and smoking is an effective way to deliver nicotine to your brain. When you smoke cigarettes, nicotine is quickly absorbed through your lungs into your bloodstream, where it is carried directly to your heart and onto your brain. Because it takes only 6 to 10 seconds for each inhalation of cigarette smoke, nicotine does not get an opportunity to dissipate, so the high concentration of nicotine in your lungs remains in your blood until it reaches your brain. Whilst addictive, nicotine is relatively safe; it is the carbon monoxide and tar, which deposit in your lungs and airways that contain the harmful carcinogens.
 
According to the 2012 US Surgeon General’s Report: “Of every 3 young smokers, only 1 will quit, and 1 of those remaining smokers will die from tobacco-related causes. Most of these young people never considered the long-term health consequences associated with tobacco use when they started smoking; and nicotine, a highly addictive drug, causes many to continue smoking well into adulthood, often with deadly consequences.”
 
Large and rising revenues of giant tobacco companies
 
Although sales of cigarettes are slowing in wealthy countries as people move to vaping, (which is not safe) the annual revenues of the giant tobacco companies continue to rise and their annual marketing and advertising spend also continues to rise. In 2016 the world’s leading tobacco company, Imperial Tobacco Groupgenerated revenues of some US$39bn and the combined annual advertising and marketing spend of the leading tobacco companies in 2017 was nearly US$9bn.
 
Price hikes and demand

There is some evidence to suggest that price increases of cigarettes reduce their demand. For example, findings of a 2014 report published  by the US Centers for Disease Control (CDC), suggested that the smoking rate in the US fell by 15% between 2008 and 2012 when the price of cigarettes increased 40%. Today, it is generally accepted in developed nations that a 10% price hike will reduce demand for cigarettes by about 4%. In 2018, New York raised the cost of a pack of cigarettes from US$10.50 to US$13. Australia has started increasing the average price of a pack of cigarettes from AUS$20 and expects to raise it to AUS$45 by 2020. This represents annual 12.5% hikes in tobacco excise tax, which by 2020 is expected to be nearly 70%; the level recommended by the World Health Organization (WHO).

As an aside, it is interesting to note that the ‘one-size-fits-all’ global excise tax incidence target of 70% proposed by the WHO could be potentially destabilizing. This is because key economic drivers influencing the illicit tobacco trade, which is now a global phenomenon, are excessive tax levels, which result in a sharp decline in cigarette affordability and organised crime’s willingness to supply illicit cigarettes given the opportunity to gain large profits from tax avoidance. The policy challenge is to reconcile cigarette affordability, tax levels and revenues and consumption.

 
The effects of advertising restrictions and graphic labelling
 
The 2014 US Surgeon General’s report suggested that, “The tobacco epidemic was initiated and has been sustained by the aggressive strategies of the tobacco industry, which has deliberately misled the public on the risks of smoking cigarettes”.  Advertising restrictions of cigarettes have been in existence in the US since the late 1990s and many other countries have restricted tobacco advertising. For example, China, where about half of the adult male population smoke, has banned many forms of tobacco advertising. Further, several nations have added graphic warning labels to illustrate the dangers of tobacco smoking. Findings of a Canadian study on the effects of such graphic warnings reported in a 2014 edition of the British Medical Journal concluded that they could decrease the number of adult smokers in the US by 5m to 9m. Each year the tobacco industry continues to spend billions on marketing and advertising.
 
Marketing changes but the same messaging
 
Because direct tobacco advertising is banned in many developed countries, increasingly marketing strategies of tobacco companies have become more subtle and indirect and feature on video games and on all forms of social media, but the overall message remains the same: that  smoking is exciting, glamorous and safe. Research suggests that young people who are introduced to cigarette smoking via such media are more likely to start smoking. Also, tobacco companies give significant price discounts amounting to over US$7bn annually to retailers and wholesalers to reduce the price of cigarettes. They also pay retailers over US$200m to stock and display particular brands of cigarettes, and nearly US$400m is paid annually to retailers and wholesalers in volume rebates and as incentives to undertake their own promotions.
 
Rationing healthcare for smokers
 
Some policy makers argue that smokers are an unnecessary and self-inflicted higher burden on over-stretched healthcare systems due to the illnesses that they pick up as a result of their own decision. The annual direct costs of medical care in the UK resulting from smoking related illnesses amounts to £2.7bn. Rationing treatment based on patients who smoke is gaining momentum in the UK. In 2016 the UK’s Royal College of Surgeons (RCS) reported findings of a 2015 survey of Clinical Commissioning Group (CCG) leaders, which found that some NHS hospitals were either delaying or denying routine surgeries, such as hip and knee replacements, for patients who smoke. Findings suggested that 39% of CCG leaders were considering new limits on the eligibility of services for financial, value or efficiency reasons. Some reported that their CCG was considering introducing referral thresholds for joint surgery. A 2015 survey of clinicians reported that 75% had witnessed rationed care in their area, and 89% of these respondents said that rationing for smokers was occurring owing to financial reasons. In November 2016, two CCG’s in Yorkshire, UK, announced plans to delay surgeries for many cigarette smokers by either 6 or 12 months if they could not prove they have stopped smoking for two months. In one of the CCG’s almost 14% of adults are smokers.
 
Factors driving increased demand
 
Although wounds heal faster and recovery is quicker in non-smokers, there is no evidence to suggest that withholding surgery successfully reduces smoking.
 
A paper published in a 2018 edition of Medical Ethics, argues that where smoking has, “significant implications for elective surgical outcomes, bearing on effectiveness, the rationing of this surgery can be justified on prognostic grounds”. But warns that although rationing certain surgeries for prognostic reasons is sound, authorities, “should avoid explicit statements, which suggest that personal responsibility is the key justificatory basis of proposed rationing measures”.

It is not only smoking, which increases demand on NHS England’s over-stretched resources. Other drivers include the UK’s aging population, reduced social care budgets, which have led to “bed-blocking”, (where people with no medical need remain in hospital because they cannot be supported at home) and staff shortages. While hospital doctor and nurse numbers have risen in the UK over the last decade, they have not kept pace with the rise in demand for healthcare services.
 
Smokers may actually be paying for their habits
 
With regards to rationing treatment for smokers, successive UK governments are conflicted as they are beneficiaries of tobacco excise tax revenues, corporation tax and the taxes of the employees of tobacco firms. When the arithmetic is done, it is not altogether clear that smokers exert a significant extra burden on healthcare resources. Indeed, it is possible that smokers actually contribute more in taxes than is needed to cover the costs of their potential health issues.  Without going into a detailed cost benefit analysis, the headline figures suggest that smokers pay for their medical costs caused by their habit in taxes. Although the cost side of the equation is challenging to pin down, we estimate the overall annual smoking-related cost to the UK taxpayer to be some £14bn, which includes £2.7bn direct cost of medical care from smoking related illnesses. Offset £12bn annual cigarette taxes - £9.5bn in excise duty plus £2.5bn of VAT - which 8m UK smokers contribute each year and you arrive at the conclusion that smokers almost cover the cost of their habit.
 
Takeaways

A range of inter-related factors operating at the individual, family, social, community and societal levels influence whether a young person starts and continues to smoke. This raises a number of unresolved questions that impinge upon health equity, including: How should we treat smokers?  How do we treat smokers? Why do we treat smokers in the ways that we do?
view in full page
Will China become a world leader in health life sciences and usurp the US?
 
After World War II, the US captured the global lead from Europe in life sciences thanks to the large American domestic market, its strong network of university research laboratories, competent regulation, effective pricing regimens and generous federal R&D funding.
 
America’s leadership in life sciences is slipping
 
Over the past two decades, as China has systematically upgraded its economy from low-grade to high-grade production, it has come to realize the significance of the health life sciences and Beijing has become determined to win a larger share of the industry’s activity. During this time America’s leadership position in the life sciences industry has slipped.
 
  • Will China usurp the US and become a world leader in health life sciences?
  • What could the erosion of the life sciences industry mean for the US economy?
  • What can American life sciences corporations do to reduce or slow their market slippage?
 
Health life sciences
 
Health life sciences refers to the application of biology and technology to improve healthcare. It includes biopharmaceuticals, medical technology, genomics, diagnostics and digital health and is one of the future growth industries positioned to radically change the delivery of healthcare, substantially reduce the morbidity and mortality of a range of chronic and incurable diseases and save healthcare systems billions. The life sciences industry plays a key role in supporting the economies of the US and China as well as other nations and helps them to compete internationally. The sector requires a complex ecosystem, which integrates high-tech research, large, long-term investments of capital in the face of significant technological, market and regulatory risks, skilled labour, specific manufacturing skills, intellectual property (IP) protection and policy support. According to a 2019 Deloitte’s report on health life sciences the global market size of the industry is projected to grow from US$7.7trn in 2017 to US$10trn by 2022.
 
Reason’s for America’s slippage
 
America’s slippage in its life sciences industry is due to:
  • Increased fair competition from a number of nations, including the UK, and increased unfair competition from China who aggressively steals US IP to piggyback on American life-sciences innovations in order to benefit from enhanced therapies without having to pay their fair share for the costly R&D. China then uses its government’s monopsony power as a purchaser of life sciences offerings to limit the prices of US and other international firms
  • Recent US Administrations’ lukewarm support for the industry. Federal biomedical research funding has been cut in real terms. Reimbursement policies are changing to a value-based approach and pricing policies have tightened. Such policies create uncertainty regarding the government’s willingness to pay for future treatments and the research necessary to discover and bring them to market. The US is also falling behind in providing innovative tax incentives for the industry
  • American life sciences corporations’ reluctance and inability to adapt their strategies and business models to changing international markets.
 
Permanent economic damage
 
The Chinese competitive threat is real and significant. It is important for the US to maintain a competitive life-sciences sector since it generates high-skilled, high-paying jobs and its product offerings are sold throughout the world and the industry is a key component of the US traded economy. A weaker American competitive position in the life sciences could mean a lower value for the dollar, a larger trade deficit, plant closures and job losses. China and other nations, which are gaining global market share at the expense of the US, could cause significant damage to the American life-sciences industry.
 
Creating a health life sciences industry is challenging enough, recreating one after it has lost significant market share is even more challenging, if not impossible. We suggest that to reduce to possibility of this happening US life sciences corporations might consider changing the mindsets of their leaders and demonstrate a greater willingness to learn from and engage with Chinese start-ups, especially those in adjacent industries with AI and machine learning capabilities and experience. The cost of doing this will be to give up some IP, which might be worth doing given the potential financial benefits from such a strategy.

 
A “bullish” American perspective
 
The generally accepted Western perspective is that the US excels at visionary research and moon-shot projects and will always be the incubator for big ideas. The reasons for this include: (i) American education is open, encourages individuality and rewards curiosity and its universities have consistently produced vast numbers of innovative discoveries in the life sciences, (ii) American scientists have been awarded the majority of Nobel prizes in physiology/medicine, physics and chemistry, and (iii)  America is the richest nation in the world. This suggests that there are no apparent reasons why the US should not continue as a world leader in health life sciences.

By contrast, China has stolen and copied America’s intellectual property (IP) for years and is a smaller economy fraught with politico-economic challenges. Although China’s economic growth has lifted hundreds of millions of people out of poverty, China remains a developing country with significant numbers of people still living below the nation’s official poverty level. Beijing has challenges balancing population growth with the country’s natural resources, growing income inequality and a substantial rise in pollution throughout the country. Further, China’s educational system is conformists and not geared to producing scientists known for making breakthrough discoveries. This is borne-out by the fact that China only has been awarded two Nobel prizes for the sciences: one for physiology and medicine in 2015 and another for physics in 2009.

 
Copiers rather than inventors
 
Over the past four decades Chinese scientists, with the tacit support of Beijing, have aggressively and unethically stolen Western technologies and scientific knowhow. According to findings of a 2017 research report from the US Intellectual Property (IP) Commission entitled The Theft of American Intellectual Propertythe magnitude of "Chinese theft of American IP currently costs between US$225bn and US$600bn annually."

America’s response to China’s IP theft has been to adopt the moral high-ground, dismiss China as an unscrupulous nation not worthy of investment and focus on commercialising its discoveries with “single bullet” product offerings and marketing them in wealthy regions of the world, predominantly North America, Europe and Japan. Over the past decade, this strategy has been supported by a US Bull market in equities, which started in 2009, outpaced economic growth in most developed nations and led to a significant degree of satisfaction among C-suites and boards of directors of US life sciences corporations, which did not perceive any need to adjust their strategies and business models despite some market slippage and changing market conditions.

 
Confucian values support conformism rather than discovery
 
Although China has benefitted economically from the theft of American IP, the American view tends to be that China is unlikely to become a world leader in the life sciences because the nation has not produced a cadre of innovative scientists and its education system is unlikely to do so in the near to medium term. Chinese education encourages students to follow rather than to question. Indeed, Confucian values remain a significant influence on Chinese education and play an important role in forming the Chinese character, behaviour and way of living. Confucianism aims to create harmony through adherence to three core values: (i) filial piety and respect for your parents and elders, (ii)  humaneness, the care and concern for other human beings, and (iii) respect for ritual. According to Confucian principles, “a good scholar will make an official”. Thus, some of China’s best scientists leave their laboratories for administrative positions.
 
Further, Chinese universities tend to bind students to their professors who expect unquestioning loyalty. Scepticism towards generally accepted scientific theories is discouraged, especially when they are held by senior academics. Also, China unlike the US, does not tolerate “failure”, and this incentivises Chinese scientists to conduct “safe” research that yields quick and “achievable” outcomes. All these factors conspire to discourage high risk creative scientific activity and encourages safer, “copycat” research endeavours.
 
The strength of the US$ and the US economy
 
America’s global leadership in the life sciences is supported by the fact that the US is the world’s richest and most powerful nation. In nominal terms (i.e., without adjustment for local purchasing power) the US and China have GDPs of US$19trn and US$12trn respectively and  populations of 326m and 1.4bn. Further, the US has an “unrivalled” global trading position: the US dollar is the strongest currency in the world and dominates the overwhelming percentage of all international trade settlements: 70% of all world trade transactions are in US$, 20% in €’s and the rest in Asian currencies, particularly the Japanese ¥ and increasingly the Chinese ¥. Also, US dollar holdings make up the largest share of foreign exchange reserves and the effect of this is to maintain the high value of the US$ compared with other currencies and provide US corporations with significant profits, US citizens with cheap imports and the US government with the ability to refinance its debts at low interest rates.
 
An Asian context
 
We suggest that it is increasingly important for American health life science professionals to get a better understanding of China and Asia. The Asian perspective described here is drawn from three recent books: The New Silk Roads: The Present and Future of the World by Peter Frankopan, The Future is Asian by Parag Khanna and AI Super-Powers: China, Silicon Valley and the New World Order published in late 2018 by Kai-Fu Lee.  

Crudely put: the 19th century was British, the 20th century American and the 21st century is expected to be Asian. The era of breakthrough scientific discoveries and stealing American IP is over, and we have entered an “age of implementation”, which favours tenacious market driven Chinese firms. “Asians will determine their own future; and as they collectively assert their interests around the world, they will determine ours as well”, says Khanna. This is starkly different to American prognosticators who assume that the world will be made in the American image, sharing American values and economics.
Asian view of the US$

Some observers suggest that there are chips appearing in the giant US edifice of international trade described above. The current US Administration’s policies have triggered and intensified discussions in Europe and Asia about America’s dominant global economic position and suggest that the US$ might be starting to weaken against a basket of currencies as China, Russia, Iran, Turkey and other nations, choose to use local currencies for some international trade transactions, which they then convert into gold. Further, central banks are tightening their monetary policies and adjusting their bond purchasing strategies. A common US view is that such trading activities are so small relative to global US$ transactions they will neither weaken the US$ nor dent America’s pre-eminent global trading position.
You might also like:

Can Western companies engage with and benefit from China?
Notwithstanding, replacing the US$ with the Chinese ¥ seems to be part of Beijing’s long-term strategy, as Beijing encourages its trading partners to accept the ¥ as payment for Chinese exports. China’s recent trading agreements with Canada and Qatar for instance have been based upon local currencies rather than the US$. China, which is the biggest importer of oil, is preparing to launch a crude oil futures contract denominated in Chinese ¥ and convertible into gold. European, Asian and Middle Eastern countries have embarked on domestic programs to exclude the US$ from international trade transactions. Also, oil exporting countries are increasingly able to choose which currencies they wish to trade in. At the same time, oil-producing countries no longer seem so interested in turning their revenues into “petrodollars. For the past decade, President Putin of Russia has been calling for the international community to re-evaluate the US$ as the international reserve currency. All this and more suggests that increasingly, emerging economies may transition from their undivided dependence on the US$ for international trade settlement to a multipolar monetary arrangement. Whilst small relative to the full extent of global trade, it is instructive to view these changes within a broader Asian context.
 
The US has had little exposure to China and Asia
 
One outcome of America’s pre-eminent global economic position and the financial success of American life sciences companies is that corporate leaders and health professionals tend to have little or no in-depth exposure to Chinese and Asian culture and markets. For example, few Fortune 500 senior executives have worked in China; few American life sciences corporations have sought in-depth briefings of Asian markets and few US students and scientists have studied or carried out research in China. Instead, American life science corporate leaders tend to be US-centric; they condemn China for its IP theft and recommend not to invest in China because a condition of doing so is that you are obliged to part with some of your IP.
 
Asia a potential economic powerhouse
 
This distancing has resulted in life science professionals “misdiagnosing” China in a number of ways, which we will discuss. One misdiagnosis is to conflate China with Asia. Asia is comprised of 48 countries. East Asia includes China, Japan and North and South Korea. South Asia includes India, Pakistan and Bangladesh. South East Asia includes Indonesia, Malaysia, Philippines, Singapore and Thailand. These three sub-regions link 5bn people through trade, finance, infrastructure and diplomatic networks, which together represent 40% of the world’s GDP. China has taken a lead in building new infrastructure across Asia - the new Silk Roads - but will not necessarily lead this vast region alone. Rather, as Khanna reminds us, “Asia is rapidly returning to the centuries-old patterns of commercial and cultural exchanges, which thrived long before European colonialism and American dominance”.
 
The difference between IP theft and imitating ‘what works

Market driven Chinese start-ups, supported by the government, are expected to transform China into a world leader in health life sciences by 2030. The thing to understand about China is that it is not just a few start-ups that steal and copy American IP but thousands, which then aggressively compete. This entails cutting prices, improving and adapting their product offerings, developing leaner operations and aligning their strategies and business models to the demands of different markets. The vast scale of this activity has led to a unique cadre of über agile Chinese entrepreneurs, who imitate successful business models and then engage in value added culture-specific product development processes. This has led to Chinese companies becoming exemplary “market driven” implementors. By contrast American companies tend to be “mission driven” and operate a “single bullet” business model and are either slow or reluctant to adapt to the demands of different markets. This results in US discoveries being exploited in Asia by Chinese rather than American companies. We suggest that there are significant benefits to be derived from American life sciences companies developing joint ventures with market driven Chinese start-ups even if it means surrendering some IP.
 
As a postscript, it is worth pointing out that the first Chinese patent was only granted in 1985 and recently, after decades of widespread theft, IP protection in China has improved at lightning speed. As Chinese companies issue more patents, the keener they are to protect them. According to the World Intellectual Property Organization in 2017 China accounted for 44% of the world’s patent filings, twice as many as America.

 
US inventions exploited in Asia by Chinese start-ups
 
An illustration of a disruptive life science technology invented in the US but exploited faster and more extensively in China is CRISPR-Cas9 (an acronym for Clustered Regularly Interspaced Short Palindromic Repeats), which is generally considered to be the most important invention in the history of biology.  The initial discovery was made in 2012 by a collaboration between Jennifer Doudna, at the University of California, Berkeley, USA and French scientist Emmanuelle Charpentier. Applications of CRISPR technology are essentially as infinite as the forms of life itself. Since its discovery, modified versions of the technology by Chinese scientists have found a widespread use to engineer genomes and to activate or to repress the expression of genes and launch numerous clinical studies to test CRISPR-Cas9 in humans.
 
Virtuous circle
 
Notwithstanding, transforming CRISPR genomic editing technologies into medical therapies requires mountains of data and advanced AI capabilities. China has both. The more genomic data you have the more efficacious clinical outcomes are likely to be. The better your clinical outcomes the more data you can collect. The more data you collect the more talent you attract. The more talent you attract the better the clinical outcomes. China is better positioned than America to benefit from this virtuous circle. China’s less than stringent regulation with regards to privacy and storing personal data gives it a distinct competitive advantage over American and Western life sciences companies. China also has more efficient means than any Western nation for collecting and processing vast amounts of personal data.
 
Collecting personal data

Any casual visitor to China will tell you that one of the striking differences with Western nations is that the Chinese economy is cashless and card-less. Citizens pay for everything and indeed organise their entire lives with a mobile app called WeChat, a multi-purpose messaging, social media and mobile payment app developed by TencentWeChat was first released in 2011 and by 2018 it was one of the world's largest standalone mobile apps, with nearly 1bn daily users who every day send about 38bn messages. Not only is WeChat China's biggest social network it is also where people turn to book a taxi, hotel or a flight, order food, make a doctor’s appointment, file police reports, do their banking or find a date and has become an integral part of the daily life of every Chinese citizen. State-run media and government agencies also have official WeChat accounts, where they can directly communicate with users. Further, an initiative is underway to integrate WeChat with China’s electronic ID system. It may be hard for people outside of China to grasp just how influential WeChat has become. There is nothing in any other country that is comparable to WeChat, which captures an unprecedented amount of data on citizens that no other company elsewhere in the world can match. This represents a significant competitive advantage. Applying AI and machine learning technologies to such vast data sets provide better and deeper insights and patterns. These vast and escalating data sets, and advanced AI capabilities for manipulating  them, give China a significant competitive advantage in the high growth life sciences industry, which  increasingly has become digital.
 
 Processing personal data
 
AI is another example of  a technology invented in the West and implemented much faster in China. The “watershed” moment for China was in 2017, when AlphaGo became the first computer program to defeat a world champion at the ancient Chinese game of Go. Since then, China has been gripped by “AI fever”.

Until recently AI machines were not much better than trained professionals at spotting anomalies and mutations in assays and data. This changed in early-2,000 with the ubiquitous spread of mobile telephony and the confluence of vast data sets and the development of neural networks, which made the onerous task of “teaching” a computer rules redundant. Neural networks allow computers to approximate the activities of the human brain. So, instead of teaching a computer rules, you simply feed it with vast amounts of data and neural networking and deep learning technologies identify anomalies and mutations in seconds with exquisite accuracy.

The Beijing Genetics Institute

An illustration of the scale and seriousness of China’s intent to become a world-leader in life sciences and to eclipse similar initiatives by the US is the 2016 launch of a US$9bn-15-year national initiative to develop technologies for interpreting genomic and healthcare data. This national endeavour followed the launch in 1999 of the Beijing Genomics Institute (BGI), which today is a recognised global leader in next generation genetic sequencing. In 2010, BGI received US$1.5bn from the China Development Bank, recruited 4,000 scientists and established branches in the US and Europe. In 2016 BGI created the China National GeneBank (CNGB) on a 47,500sq.m site in Shenzhen, which benefits from BGI’s high-throughput sequencing and bio-informatics capacities. CNGB officially opened in July 2018 and is the largest gene bank of its kind in the world. Dozens of refrigerators can store samples at temperatures as low as minus 200 degrees Celsius, while researchers have access to 150 domestically developed desktop gene sequencing machines and a US$20m Revolocity machine, known as a “super­sequencer”. The Gene Bank enables the development of novel healthcare therapies that address large, fast growing and underserved global markets and to further our understanding of genomic mechanisms of life. Not only has CNGB amassed millions of bio-samples it has storage capacity for 20 petabytes (20m gigabytes) of data, which are expected to increase to 500 petabytes in the near future. The CNGB represents the new generation of a genetic resource repository, bioinformatics database, knowledge database and a tool library, “to systematically store, read, understand, write, and apply genetic data,” says Mei Yonghong, its Director.

US life sciences benefit by engaging with Chinese companies

Lee, in his book about AI, suggests that it is not so much Beijing’s policies that keep American firms out of the Chinese markets, but American corporate mindsets, which misdiagnose Chinese markets, do not adapt to local conditions and fail to understand the commercial potential of Chinese start-ups and consequently get squeezed out of the Chinese market.

This is what happened as Google failed to Baidu, Uber failed to DiDi, Twitter failed to Weibo, eBay failed to TaoBao, and Groupon failed to Meituan-Dianping. We briefly describe the demise of Groupon and point to lessons, which can be learned from it.
 
Lessons from Groupon’s failure in China

Groupon failed to adapt its core offering when group discounts in China faded in popularity and as a consequence it rapidly lost market share. Meituan, founded in 2010 as a Chinese copy of Groupon, quickly adapted to changing market conditions by extending its offerings to include cinema tickets, domestic tourism and more importantly, “online-to-offline” (O2O) services such as food and grocery delivery, which were growing rapidly.
 
In October 2015, Meituan merged with Dianping, another Chinese copy of Groupon, to become Meituan-Dianping the world's largest online and on-demand booking and delivery platform. The company has become what is known as a transactional super app, which amalgamates lifestyle services that connect hundreds of millions of customers to local businesses. It has over 180m monthly active users and 600m registered users and services up to 10m daily orders and deliveries. In the first half of 2018 Meituan-Dianping facilitated 27.7bn transactions (worth US$33.8bn) for more than 350m people in 2,800 cities. That is 1,783 enabled services every second of every day, with each customer using the company’s services an average of three times a week. Meituan-Dianping IPO’d in 2018 on the Hong Kong stock exchange and raised US$4.2bn with a market cap of US$43bn.
 
Efficiency also drives innovation. Meituan-Dianping’s Smart Dispatch System, introduced in 2015, schedules which of its 600,000 motorbike riders will deliver the millions of food orders it fulfils daily. It now calculates 2.9bn route plans every hour to optimize a rider’s ability to pick up and drop off up to 10 orders at once in the shortest time and distance. Since Smart Dispatch launched, it has reduced average delivery time by more than 30% and riders complete 30 orders a day, up from 20, increasing their income. In 2019, the American business magazine Fast Company ranked Meituan-Dianping as the most innovative company in the world.
 
Takeaways
 
Although Meituan-Dianping and other companies we mention may not be well known in the West and are not in the health life sciences industry, they are engaged in highly complex digital operations disguised as simple transactions, which enhance the real-world experiences of hundreds of millions of consumers and millions of merchants. To achieve this the companies have amassed vast amounts of data and have perfected AI and machine learning technologies, which make millions of exquisitely accurate  decisions every hour, 24-7, 365 days a year. Such AI competences are central to the advancement of health life sciences. American life science professionals might muse on the adage: “make your greatest enemy your best friend” and consider trading some of their IP to joint venture with fast growing agile Chinese data companies in a strategy to restore and enhance their market positions.
view in full page
  • People and doctors often miss early warning signs of cancer
  • Nearly 50% of all cancers are diagnosed late when they have already spread
  • Each year cancer kills 8m people worldwide and cost billions
  • 40% of cancer deaths could be prevented by early detection
  • Traditional tissue biopsies used to diagnose cancer are invasive, slow, costly and often yield insufficient tissue
  • New non-invasive tests are being devised to detect cancer early
  • Such tests are positioned to significantly reduce the vast and growing global burden of cancer
  • But before these tests enter clinics, they need to overcome a number of challenges
 

A paradigm shift in cancer diagnosis


How close are we to developing a simple, cheap, rapid and exquisitely sensitive non-invasive test to diagnose cancer in healthy-looking people?

Recently, attention has been drawn to a breathalyser test for cancer diagnosis, which is just starting a significant 2-year clinical study in the UK. In 2018, a “liquid biopsy” was popularly heralded as “the holy grail” of cancer diagnosis, only quickly to be quashed by medical experts who warned that this conclusion was “premature” and “misleading”. Further, image recognition is increasingly being used as a technique to detect cancer. Given the extent and depth of these endeavours it seems reasonable to assume that, within the next decade, gold-standard solid tumour biopsies for detecting cancer will be replaced by non-invasive diagnostic techniques.

 
In this Commentary
 
In this Commentary we describe evolving innovative techniques to detect cancer early, which include a breathalyser, a liquid biopsy and an image recognition test. But first we: (i) briefly describe the epidemiology of cancer, (ii) explain the extent, implications and some of the causes of late diagnosis, which is driving the development of these new non-invasive detection techniques, (iii) describe how ‘personalized’ medicine, predicated upon the molecular signatures of cancer tumours, has become routine clinical practice and demand more efficacious techniques to understand the complexities of cancer.
 
Cancer snapshot
 
Cancer is among the leading causes of death worldwide. In 2012, there were 14.1m new cases and 8.2m cancer-related deaths worldwide. 57% of these new cancer cases occurred in less developed regions of the world, which include Central America, parts of Africa and Asia. 65% of cancer deaths occurred in these regions. The number of new cancer cases per year is expected to rise to 23.6m by 2030. It is estimated that over 40% of cancer cases are preventable. In the UK there are more than 360,000 new cancer cases and over 166,000 cancer deaths every year. Since the early 1990s, incidence rates for all cancers combined in England have increased by 13% each year. Annual NHS costs for cancer services are over £5bn, but the cost to British society - including costs for loss of productivity - is over £18bn. In the US, over 1.7m new cases of cancer were diagnosed in 2018 and some 0.61m people died from the disease. It is estimated that in the US the annual national expenditure on cancer is some US$150bn. Early diagnosis and cancer prevention would significantly reduce  cancer morbidity and mortality and achieve large cost savings for healthcare systems.
 
The challenge of late cancer diagnoses

The significance of developing a simple non-invasive test to diagnose cancer early cannot be over-emphasised. For a number of reasons, almost half of people who get cancer are diagnosed late, which makes treatment less likely to succeed, reduces chances of survival and significantly increases the cost of care. For instance, in the UK about 25% of all cancer cases only are diagnosed following presentation in A&E. The vast majority of these cases are already at a late stage, when treatment options are limited, and survival is poorer. Further, a substantial percentage of people neither avail themselves  of cancer screening nor present themselves to primary care physicians with early symptoms. A good example of this is cervical cancer screening in the UK, which is offered every three years to all women aged between 25 and 64. Despite the test only taking a few minutes, each year over 1.3m women choose not to attend, and non-attendance is the biggest risk factor to developing cervical cancer. Each year, some 220,000 women in the UK are diagnosed with cervical abnormalities and over 800 women die from the disease.
 
Implications of inefficient healthcare systems
 
Late diagnosis not only occurs for non-compliance. Some cancers are asymptomatic while others have general non-specific symptoms and are often mistaken for lesser ailments. Further, inefficiencies in healthcare systems can lead to late diagnosis and increased cancer morbidity and mortality. For example, in February 2019 the UK’s National Audit Office (NAO) published an “Investigation into the management of health screening”, which concluded that none of the key screening programs in England - for bowel, breast or cervical cancer - met their targets because of management and IT failures.  As a consequence, about 3m women across England have not had a cervical cancer test for at least three-and-a-half years. In 2018, more than 150,000 cervical screening samples piled-up in laboratories due to outdated IT systems, staff shortages and changes in testing procedures. Faulty IT systems also are reported to have resulted in 5,000 women not being invited for breast screening, which in England is currently offered once every three years to women aged 50 to 70. According to the NAO report, in 2017 450,000 women missed a final breast cancer screening test because of a system failure, which is believed to have been responsible for some 270 deaths.
 
Molecular biology challenges to gold standard solid tissue biopsies
 
In the past decade, ‘personalized’ medicine predicated upon the molecular signatures of cancer tumours has become routine clinical practice. The identification on tumour tissue of predictive biomarkers of response to personalized targeted therapies is now considered optimal patient care. Notwithstanding, such treatment faces a number of biological and technological challenges associated with traditional solid tumour biopsies' access to tumours and the heterogeneity of tumours.
 
While some cancer tumours are easily accessed, others have limited accessibility because they are either deep in the body or embedded in critical organs. This makes obtaining a comprehensive “picture” of such tumours challenging and may increase clinical complications. Further, tissue samples from different regions of the same tumour may differ and tissue specimens from primary and metastasized tumours can also differ. In addition, studies have shown the dynamic changes of tumour features over time and the emergence of therapy-resistance. Thus, inter- and intra-tumour heterogeneity pose a pivotal challenge to guide clinical decision-making in cancer therapy as traditional biopsies may be unable to capture a complete genomic landscape of a patient’s tumour. 
 
A non-invasive test, such as sampling blood, urine, salvia and breath can provide the same genetic information as a solid tissue biopsy and has certain added advantages, which include: (i) they are a source of fresh tumour-derived material, unhampered by preservatives and (ii) they provide an alternative sample type in routine clinical practice when tumour sampling is unavailable, inappropriate or difficult to obtain.
Breath test to diagnose cancer

Because of the challenges associated with traditional biopsies, clinical attention is turning to non-invasive tests and recently to a breath test, which promises to be able to diagnose cancer early. A study to detect cancer through breath, which was carried out by researchers from Imperial College London and the Karolinska Institutet in Sweden and presented at the 2017 European Cancer Congress (ECC) in Amsterdam, Holland was promising but inconclusive.

You might also like:

World’s first blood tests that detect and locate cancer


 
The study aimed to test whether a “chemical signature”, composed of five substances, which seemed to typify cancer could be the basis for a diagnostic test for the disease. Breath samples were tested of some 335 patients attending leading London hospitals. Of these, 163 had been diagnosed with oesophageal or stomach cancer and 172 presented with upper gastrointestinal symptoms, but without any evidence of cancer after an endoscopy.

Findings suggested that four of the five chemical substances were expressed differently in the breath samples from those diagnosed with cancer, compared to those where no cancer had been found. The breath test was able to correctly indicate cancer in around 80% of patients who had cancer (sensitivity), and able to correctly exclude cancer in around 80% of cases, which did not have cancer, (specificity). Although the findings were promising, researchers concluded that, "The study shows the potential of breath analysis in non-invasive diagnosis of oesophageal cancer. The potential benefits of this technology to patients may be early diagnosis and improved chance of survival. If placed as an endoscopy triage test, the benefits to healthcare systems may include cost-saving through reducing the number of negative endoscopies. However, these findings must be further validated in an un-enriched larger population of patients undergoing diagnostic endoscopy and in false negative patients the value of repeat testing should be established".

 
Expanded clinical study for breath biopsy

Following these promising conclusions a large two-year clinical trial of a breath test, called the Breath Biopsy, supported by Cancer Research UK was started in January 2019 at Addenbrooke’s Hospital in Cambridge, UK, and aims to detect whether exhaled airborne molecules called volatile organic compounds (VOCs) can be useful in detecting cancer. The study expects to recruit 1,500 participants including healthy people to act as a control group. Scientists hope the study will lead to a simpler, cheaper method of spotting cancers at an early stage when they are more likely to respond to treatment. Study participants will be asked to breathe into a device called the Breath Biopsy, which has been developed by Owlstone Medical, a private company founded in 2003 and based in Cambridge. 
 
Breath biopsy to target two challenging cancers
 
In the first instance, only patients with oesophageal and stomach cancers will be invited to try the Owlstone breath biopsy.  Both of these cancers are aggressive and tend to be diagnosed late because in the early stages they either cause no symptoms - in the case of oesophageal cancer - or symptoms that are vague and easy to mistake for other less serious conditions - in the case of stomach cancer. Currently, oesophageal and stomach cancers are diagnosed using endoscopy, which involves a camera attached to a flexible tube being passed down the throat. The procedure is invasive, it risks complications and is expensive. If the breath test is successful with these two cancers, it will be expanded to include patients with prostate, kidney, bladder, liver and pancreatic cancers.
 

Oesophageal and stomach cancers
 
Oesophageal cancer is the 7th most commonly occurring cancer in men and the 13th most commonly occurring cancer in women. In 2018, there were over 0.5m new cases diagnosed globally. The 5-year survival rate for patients with oesophageal cancer is less than 20%. Each year, there are around 9,000 new cases diagnosed in the UK and around 7,900 oesophageal cancer deaths. In the US, it is estimated that there were 17,290 new cases of the disease and 15,850 deaths in 2018
 

Stomach cancer is the 4th most commonly occurring cancer in men globally and the 7th most commonly occurring cancer in women. The disease represents the 3rd cause of cancer death in the world with about 723,000 deaths each year, which accounts for 8.8% of all cancer deaths. In 2018, there were over 1m new cases of stomach cancer worldwide. The five-year survival rate for the disease is about 30% and the 10-year survival rate 15%. According to the American Cancer Society's estimates, over 27,000 patients are expected to be diagnosed with stomach cancer in the US in 2019, of whom some 11,000 are expected to die. In the UK, there are around 7,000 new stomach cancer cases every year and around 4,500 stomach cancer deaths.

 
Chemical signature

According to the lead investigator of the breath biopsy clinical study, Rebecca Fitzgerald, professor of Cancer Prevention at Cambridge University and Consultant in Gastroenterology and General Medicine at Addenbrooke's Hospital, “We urgently need to develop new tools, like this breath test, which could help to detect and diagnose cancer earlier, giving patients the best chance of surviving their disease. Through this clinical trial we hope to find signatures in breath needed to detect cancers earlier. It’s the crucial next step in developing this technology.”
 
Liquid biopsies

Following the presentation of research findings of liquid biopsy clinical studies at the 2018 annual conference of the American Society of Clinical Oncology (ASCO) there were press reports suggesting that the new test was the holy grail” of cancer diagnosis. This was quickly quashed by medical experts who described the press claims as “premature” and “misleadingly”.

A “liquid biopsy“ has the potential to detect and classify mutations from minute fragments of circulating tumour in a blood sample and entails assessing circulating tumour cells (CTCs) and cell-free DNA (cfDNA) and its subsets of circulating tumour DNA (ctDNA) and cell-free RNA (cfRNA). Liquid biopsies are considered to provide significantly superior biomarkers than the traditional cancer biomarkers such as the prostate specific antigen (PSA) and cancer antigen 125 (CA125) tests, which have been used for decades to support the diagnosis and management of cancer. With the exception of the PSA test, which is used as a screening test for prostate cancer, none of the traditional cancer tests are recommended for population screening because their sensitivity and specificity are not accurate enough.

 
Liquid biopsies effective only after diagnosis
 
While promising, liquid biopsies represent an emerging technology, which has been shown to be effective in personalizing therapy after diagnosis but has yet to demonstrate its clinical utility against the current gold standard tissue biopsies for confirming a cancer diagnosis. There is a relative dearth of evidence on the capabilities of liquid biopsies for detecting cancer early. Expert consensus suggests that liquid biopsies have significant limitations and the tests are not sufficiently developed for widespread use. Liquid biopsies are neither as good nor better than existing screening methods and are not ready for meaningful clinical application because their accuracy, reliability, and reproducibility are still unknown.
 
US biotech start-up conducting large clinical studies of liquid biopsies
 
Notwithstanding, the development of liquid biopsies continue at a pace. Not least the R&D being undertaken by GRAIL Inc., a private US biotech company, spun out in 2015 from San Diego-based Illumina, the world’s largest gene sequencing company. GRAIL is currently valued at US$2.5bn and since its inception has raised US$1.5bn. The company has started two large long-term clinical studies aimed at developing a liquid biopsy for early cancer detection.
 
Early test results suggest that it is not money holding these liquid biopsies back, but basic biology. To evaluate potential blood screens, thousands of patients will have to get tested - and then researchers will have to wait for some of them to actually get cancer, which is the only way to determine not only the predictive power of the tests, but also whether they lead to improved patient outcomes.
 
Image recognition and medical diagnosis
 
Image recognition is another technology being used to develop non-invasive cancer diagnostic tests. Examples include Google’s Lymph Node Assistant (LYNA), which claims to be better than doctors at spotting late-stage breast cancer. LYNA can detect secondary cancer cells in medical scans with 99% accuracy. Secondary cancer cells are responsible for spreading cancer and detecting them is time-consuming and challenging for pathologists.

A study published in the August 2018 edition of Nature Mind reports findings on the first phase of a study undertaken by Moorfields Eye Hospital and Google’s DeepMindwhich enables computers to analyse high-resolution 3D scans of the back of the eye to detect more than 50 eye conditions. 

A study published in the October 2017 edition of the journal Frontiers in Psychology, report findings of research conducted by scientists from  Macquarie University in Sydney, Australia, which suggests facial shape analysis can correctly detect markers of physiological health in individuals of different ethnicities.

Shanghai based Yitu Technology and Beijing-based Infervision are among start-ups racing to improve medical imaging analysis by using the same technology that powers facial recognition and autonomous driving. These examples, and others, are indicative of an intensifying competition between the US and China to dominate the life sciences, which is a significant growth industry of the future. In a forthcoming Commentary we shall describe this competition in more detail and explain the comparative advantages of the two nations.

 
Takeaway

It seems reasonable to suggest that over the next decade the gold standard solid tissue biopsy for diagnosing cancer will be replaced with cheap, rapid, non-invasive diagnostic tests, which are able to detect cancer early and thereby make a significant dent in the vast and escalating global burden of the disease.
view in full page

Is the digital transformation of MedTech companies a choice or a necessity?
 
Will 2019 see medical technology (MedTech) companies begin to digitally transform their strategies and business models to improve their commercial prospects?
 
We describe some of the changing market conditions that drive such transformations. We also briefly report the findings of two research papers on corporate digital transformations published in recent editions of the Harvard Business Review. These suggest that there are two “must haves” if company transformations are to be successful: leadership with the appropriate mindset and access to talented data scientists.
 
A bull market encouraging a business-as-usual mindset
 
MedTech is a large growing industrial sector (see below), which has benefitted significantly from the bull market in equities over the past decade but is one of the least equipped to prosper over the next decade in a radically changing healthcare ecosystem and a more uncertain global economy.

For the past decade equity markets have outperformed global economic growth and protected a conservative, production-orientated business-as-usual mindset in MedTech C-suites and boards of directors. This has made organizations either slow or reluctant to transform their strategies and business models, which define how they create and capture value. As we enter 2019 the protection that the MedTech industry enjoyed for years has been weakened by more uncertain markets, the tightening of monetary policy, slower global economic growth and disruptive technological change.

In this new and rapidly evolving environment MedTech markets are expected to continue growing but at a slower rate, operating margins are expected to decline as unit prices erode and companies will no longer be able to earn premium margins by business-as-usual strategies. Building a prosperous organization in a more uneven future is an important challenge facing MedTech leaders and will require a significant shift in their mindset and the talent they engage and develop.  
 

Medical technology

MedTech represents a significant sector of global healthcare, which has been relatively stable for decades. It has a market size of some US$430bn and has consistently experienced high margins and significant sales growth. For example, over the past decade the sector has grown at an annual compound growth rate of about 5%, with operating margins between 23% and 25%. The sector includes most medical devices, which prevent, diagnose and treat diseases. The most well-known include in vitro diagnostics, medical imaging equipment, dialysis machines, orthopaedic implants and pacemakers. The US and Western Europe are established centres for the sector, but trends suggest that China and India will grow in significance over the next decade. The sector is dominated by about 10 giant companies, which account for nearly 40% of the global market in sales revenues. All MedTech companies have significant R&D programs and the global spend on R&D is expected to grow from US$27bn in 2017 to US$34bn by 2022. An indication of how far developments in medical technology have come is robot-assisted surgery, which employs artificial intelligence (AI) for more precise and efficacious procedures. Robot-assisted surgery is expected to become a US$13bn global market by 2025. In the US the repeal of the medical device excise tax was not included in the recent tax reform. The industry believes the tax has a negative impact on innovation, and the rate of R&D spending by US MedTech companies is expected to fall by 0.5% over the next five years.
 
Resistance to change

For the past decade a substantial proportion of MedTech companies either have resisted or been slow to transform their strategies and business models despite increasing pressure from rapidly evolving technologies, changing reimbursement and regulatory environments and a chorus of Industry observers calling for MedTech companies to become less product-centric and more solutions orientated. This reluctance to change can be explained by a bull market in equities, which began in March 2009, outperformed economic growth, delivered some of the best risk-adjusted returns in modern market history and encouraged a conservative mindset among corporate leaders, who were reluctant to change and developed a “if it’s not broken why fix it” mindset.

Because the MedTech sector has been stable for years, established players have been able to compete successfully across the device spectrum, applying common business models and processes without much need for differentiation. MedTech’s strategy has been to market high priced sophisticated product offerings in a few wealthy regions of the world; mainly the US, Western Europe and Japan, which although representing only 13% of the world’s population account for more than 86% of the global MedTech market share (US: 42%, Europe: 33%, Japan: 11%). It seems reasonable to assume that in the future, as markets become more turbulent and uncertain, this undifferentiated strategy and business model will need to transform into ones that are far more distinctive and proprietary.

 
M&A has been MedTech’s principal response to market headwinds

MedTech’s principal adjustment to market headwinds over the past decade has been to increase its M&A activity rather than transform its strategies and business models. M&A’s increased companies scale and leverage, drove stronger financial performance, allowed companies to obtain a broader portfolio of product offerings and increased their international footprints. Some recent high-profile examples of M&A activity in the sector include Abbott’s acquisition of St. Jude’s Medical in January 2017, which led to Abbott holding some 20% of the US$40bn global cardiovascular market. Johnson & Johnson’s US$4bn buyout of Abbott Medical Optics Inc in February 2017, and the “mother of all M&A activity” was Becton Dickinson’s 2017 acquisition of C.R. Bard for US$24bn, which is expected to generate annual revenues of US$15bn.

According to a January 2018 McKinsey report between 2011 and 2016, 60% of the growth of the 30 largest MedTech companies was due to M&A’s, and between 2006 and 2016, only 20% of 54 pure-play publicly traded MedTech companies, “mostly relied on organic growth”. 
As MedTech leaders return to their desks in early 2019 after the worst December in stock market recent memory, they might begin to reflect on their past all-consuming M&A activity, which resulted in bigger but not necessarily better companies. After such a prolonged period of M&A’s, there is likely to be a period of portfolio optimization. Divestitures and spin-outs allow companies to capture additional value by improving capital efficiency, reducing operational complexity and reallocating capital to higher-growth businesses as the industry invests more in R&D to develop innovative product offerings that demonstrate value in an increasing volatile era and increasing price pressures. But divestitures are not necessarily changing strategies and business models, so MedTech’s vulnerabilities remain.
You might also like:

Who should lead MedTech?



The IoT and healthcare


 
Black December 2018 for equities
 
It is too early to say whether “Black December 2018” represents the end of the longest equity market bull-run in recent history, but it is worth noting that on Friday 21st December the Nasdaq composite index closed at 6,332.99, which was a drop of 21.9% from an all-time high of 8,109.69 on August 29th. The generally accepted definition of a bear market is a drop of at least 20% from a recent peak. World markets followed Wall Street. Japan’s Topix Index fell to its lowest level for 18 months and the pan European Stoxx 600 Index hit a two-year low. However, seasoned market observers suggest that although the average bull market tends to last for about 10 years, it does not simply die of old age, and the December 2018 market behaviour is consistent with a “maturing cycle” in which there is still room for stocks to grow. This note of optimism could encourage a continuation of a “business-as-usual” mindset in MedTech C-suites and boards of directors.
 
Anaemic economic growth forecasted

The outlook for the global economy in 2019 does not bring any comfort. In October 2018 the International Monetary Fund lowered its forecast for global economic growth for 2019, from 3.9% to 3.7%; citing rising trade protectionism and instability in emerging markets. In September 2018 the Organisation for Economic Cooperation and Development (OEDC) suggested that economic expansion may have peaked and projected global growth in 2019 to settle at 3.7%, “marginally below pre-crisis norms with downside risks intensifying.” The OECD also warned that the recovery since the 2008 recession had been slow and only possible with an exceptional degree of stimulus from central banks. And such support is ceasing.
 
Tightening of monetary policy

Global monetary policy is tightening as central banks retreat from their long-standing market support. After four years of quantitative easing (QE) the European Central Bank (ECB) has ended both its money printing program and its €2.6trn bond purchasing program. The Bank has done this just as the Eurozone growth is cooling and Europe seems to be destined for a slow relative decline, which raises concerns about the sustainability of the single currency area. Notwithstanding, some observers suggests that for the next few years capital can be reasonably safely deployed in the beer-drinking nations of northern Europe, but not in the wine-drinking countries of southern Europe; especially France and Italy, two countries at the centre of the Eurozone’s current challenges. France’s budget deficit exceeds that permitted by the EU and in the latter part of 2018 the nation’s anti-government gilets jaunes demonstrators led to President Macron promising more welfare spending than the nation can afford. This could suggest that France is on the cusp of an Italian-style debt crisis. Although these economic trends have been telegraphed for some time, after nearly a decade of a bull market and low interest rates, there seems to be some complacency in the equity markets about the risks from higher rates and elevated corporate debt. But this sentiment is expected to change in 2019.
 
Transformation is no longer a choice

This more uncertain global economic outlook, heightened US-China tensions, tighter monetary policy and a maturing global business cycle together with significantly changed and evolving healthcare ecosystems suggest that transformation of MedTech strategies and business models is no longer a choice but a necessity if they are to maintain and increase their market positions over the next decade.
 
A challenge for many MedTech companies is that they still work on dated and inappropriate systems or hierarchical processes, and too few leaders and board members fully comprehend the speed and potential impact of advanced digital technologies. Those organization with some appreciation of this are already looking to adjacent sectors for talent and knowhow that could help them evolve their strategies and business models. But such partnerships might not be as efficacious as expected. We explain why below.
 
Digital transformations

Let us turn now to consider digital transformations. Data scientists and machine learning engineers are critical to any digital transformation. One significant challenge for companies contemplating such change is talent shortage, which disproportionately affects companies not use to dealing with such talent. Data scientists are aware of their scarcity value and they tend not to work in IT silos of traditional hierarchical organizations but prefer working for giant tech companies in devolved networked teams, focusing on projects that interest them.

Companies that fail to engage talented data scientists will be at a disadvantage in any digital transformation. Mindful of such challenges some MedTech companies are beginning to partner with start-ups and smaller digitally orientated companies. But this is not necessarily an answer because talent shortage also affects start-ups. The answer lies in understanding how giant tech companies recruit talented individuals. Companies like Google and Facebook are more interested in “tech savvy” individuals and less interested in formal qualifications. They tend to catch such talent with attractive internships when they are seniors in high school and juniors at university. These companies understand digital technology and have seen enough interns that they can correlate their performance on coding tests and technical interviews with their raw ability and potential rather than relying on formal qualifications as a proxy for skill.
 
A new and more dynamic leadership mindsets

Future MedTech leaders will not only need to have a deep knowledge of disruptive digital technologies and AI systems, but will need to have the mindset of an “inclusive networked architect” with an ability to create and develop learning organizations around diverse technologies with dispersed talent. Traditional hierarchical production mindsets, which have benefitted from business-as-usual for the past decade are unlikely to be as effective in an environment which is experiencing the impact of a significant and rapid shift in technological innovation. Sensors, big data analytics, AI, real-world evidence (RWE), robotic and cognitive automation are converging with MedTech and encouraging companies to pivot from being product developers to solution providers. This requires leaders with mindsets that reward value instead of volume and are agile enough to meet increasing customer expectations, whether those customers are payers, providers or patients.

Without leaders with informed, forward-thinking mindsets, enthused about new models of organizational structures, culture and rewards that provide greater autonomy to talented teams and individuals, MedTech companies could remain at a disadvantage in competing with other technology companies for similar talent and expertise. Future MedTech leaders must understand how work is being redefined and the implications of this for talented individuals and devolved networked teams. It seems reasonable to assume that future MedTech leaders will be generalists: executives with more than one specialism with an ability to breakdown silos and bridge knowledge gaps across organizations and develop new models of organizational structure, culture, and rewards.
 
Successes and failures of digital transformations

We have focused on digital transformation of traditional companies as a means for them to prosper in radically changing market conditions. Although there has been a number of successful corporate digital transformations there has also been a significant number of failures. Understanding why some succeed and some fail is important.
 
Successful digital transformations

One notable successful digital transformation is Honeywell, a Fortune 100 diversified technology and manufacturing company, which overcame threats from market changes and disruptive digital technologies by transforming its strategies and business models. In 2016, Honeywell’s Process Solutions Division, a pioneer in automated control systems and services for the  oil, gas, chemical and mining industries, set up a new digital transformation unit to assist its customers to harness advantages from the Internet of Things (IoT) by increasing their connectivity to an ever-growing number of devices, sensors and people in order to improve the safety, reliability and efficiency of their operations.

The Unit’s primary focus is on outcomes, such as reducing costs and enabling faster and smarter business decisions. Honeywell’s IoT platform called Sentience, is considered a toolkit to collect, store and process data from connected assets, offering services to analyse these data and generate insights from them to enable data-based, value-added services. Unlike similar platforms developed by Siemens and General Electric (GE), Honeywell does not sell their platform as an app, but markets data-based services predicated on its platform, which enable its customers to optimize the performance of their connected assets and improve overall production efficiency. Other corporations that have set up similar transformation units to harness the benefits of disruptive technologies include Hitachi, Hewlett-Packard, SAP and UPS.

Failed digital transformations

Perhaps the biggest digital transformational failure is General Electric (GE). In 2011, the then CEO Jeff Immelt became an advocate for the company’s digital transformation. GE created and developed a significant portfolio of digital capabilities including a new platform for the IoTs, which collected and processed data used to enhance sales processes and supplier relationships. Immelt suggested that GE had become a “digital industrial company”. The company’s new digital technology reported outcomes of a number of indices, which over time improved and attracted a significant amount of positive press. Notwithstanding, activist investors were not so enamoured, GE’s stock price languished, Immelt was replaced and the company’s digital ambitions came to a grinding halt. Other notable corporates, which tried and failed to harness the commercial benefits from disruptive technologies include Lego, Nike, Procter & Gamble and Burberry.  

Digitally transformed companies outperform those that resist change

Notwithstanding, research findings published in the January 2017 edition of the Harvard Business Review suggest that digitally transformed companies outperform those that lag behind. Findings were derived from 344 US public companies drawn from manufacturing, consumer packaging, financial services and retail industries with median revenues of some US$3.4bn. Conclusions suggest that digitally transformed companies reported better gross margins, enhanced earnings and increased net income compared to similar companies, which lagged behind in digital change. “Digital technology changes the way an organization can create value: digital value creation stems from new, network-centric ways your business connects with partners and customers offering new business combinations,” say the authors of the study. Critically, the mindset of leaders is significantly linked to successful digital transitions. According to the study’s authors, “Our research indicates that these leaders approach the digital opportunity with a different strategic mindset and execute on the opportunity with a different operating model.”

Reasons for failing to transform

According to a paper published in the March 2018 edition of the Harvard Business Review there are four reasons why digital transformations fail.
  • Leaders’ narrow understanding of “digital”, which is not just technology but a blend of talented people, organizational culture, appropriate machines and effective business processes
  • Poor economic conditions and depressed demand for product offerings
  • Bad timing. It is important that your market sector is prepared for the changes your company is proposing
  • Paying insufficient attention to legacy business. “The allure of digital can become all-consuming, causing executives to pay too much attention to the new and not enough to the old”. 
 
Takeaways
 
Business history has shown that large and established companies, which fail to respond to disruptive technologies in a timely and appropriate fashion can fail and disappear. Notable examples include America Online, Barnes & Noble, Borders, Compaq, HMV, Kodak, Netscape, Nokia, Pan Am, Polaroid, Radio Shack, Tower Records, Toys R Us and Xerox. MedTech leaders might be mindful of Charles Darwin’s hypothesis, which he describes in his book, On the Origin of Species published in 1859. Darwin suggests that “in the struggle for survival, the fittest win out at the expense of their rivals because they succeed in adapting themselves best to their environment”. Such a statement would not be out of place in a modern boardroom. It suggests that all industrial sectors need to develop to keep abreast of innovations and evolving trends. The main difference is that Darwin’s natural selection processes take millions of years, while significant changes that effect commercial businesses can take a matter of months.
view in full page
Bridging the gap between medical science and policy to reduce the biggest 21st century healthcare burden

 
In November 2018 the Mayor on London Sadiq Khan, announced that junk food adverts will be banned on all London transport from February 2019 in an attempt to reduce the “ticking time bomb” of childhood obesity in the city.

London has one of the highest obesity rates in Europe with some 40% of 10 to 11-year olds either overweight or obese, with children from more deprived areas disproportionately affected. Obesity is a common and costly source of type-2 diabetes (T2DM), which is much more aggressive in youngsters and complications of the condition - blindness, amputations, heart disease and kidney failure - can present earlier. What is happening in London and the UK is replicated in varying degrees in cities and nations throughout the world: there is a global epidemic of obesity and T2DM, which together is often referred to as ‘diabesity’.
 
The “good” news is that at the same time Khan announced the advertising ban, the UK’s national news outlets were reporting the product of four decades of scientific research, which suggested that T2DM could be reversed by a liquid diet of 800-calories a day for three months.
 
Although this offers hope for millions of people, an unresolved challenge is whether this simple and cheap therapy will be implemented effectively to significantly dent the burden of diabesity, which arguably is the biggest healthcare challenge of the 21st century.
 
In this Commentary

We describe some of the research behind the news reports about the therapy to reverse T2DM. Although the scientists’ innovative solution of a low-calorie liquid diet has been adopted enthusiastically by some healthcare providers and organizations specifically set up to dent the burden of diabesity, it is questionable whether the gap between science and policy can be bridged. This, we suggest, is because the prevalence of diabesity is growing at a significantly faster rate than the effect of programs to prevent and reduce the condition.
 

Obesity and T2DM

Obesity, which is a significant risk of T2DM, is a complex, multifaced condition, with genetic, behavioural, socioeconomic and environmental origins. Diet and sedentary lifestyles may affect energy balance through complex hormonal and neurological pathways that influence satiety. Also, urbanization, the food environment and the marketing of processed foods are contributory factors to becoming overweight and obese. Notwithstanding, the main driver of weight gain is energy intake exceeding energy expenditure.
 
T2DM is a chronic, progressive metabolic disease, which until recently has been perceived as incurable. Although genetic predisposition partly determines the condition’s onset, being overweight and obese are significant risk factors. Generally accepted clinical guidelines to treat the condition is to reduce glycated haemoglobin (HbA1c) - blood sugar (glucose) - levels. The HbA1c test assesses your average level of blood sugar over the past two to three months. The normal range for HbA1c is 4% to 5.9%. In well-controlled diabetic patients HbA1c levels are less than 6.5% or 48mmol/moll. High levels of HbA1c mean that you are more likely to develop diabetes complications, such as serious problems with your heart, blood vessels, eyes, kidneys, and nerves. T2DM is treated primarily with drugs and generic lifestyle advice, but many patients still develop vascular complications and life expectancy remains up to six years shorter than in people without diabetes. 

 
Obesity

The Organisation for Economic Co-operation and Development’s (OEDC) 2017 Health at a Glance Report warned that obesity in the UK has increased by 92% in the past two decades. Two-thirds of the UK’s adult population are overweight and 27% have a body mass index (BMI) of 30 and above, which is the official definition of obesity. In 2017 there were 0.6m obesity-related hospital admissions in the UK, an 18% increase on the previous year. Each year, obesity cost NHS England in excess of US$10bn in treatment alone.
 
A 2018 World Health Organization (WHO) report suggests that obesity globally has almost tripled since 1975. In 2016, more than 1.9bn adults, 18 years and older, were overweight. Of these over 650m were obese. According to a 2018 WHO report on childhood obesity 41m children under the age of 5 were overweight or obese in 2016 and over 340m children and adolescents aged 5-19 were overweight or obese.
Bad diets
 
Diets in the UK, and in most wealthy advanced industrial economies, tend to have insufficient fruit and vegetables, fibre and oily fish and too much added sugar, salt and saturated fat. Rising consumption of processed food and sugary drinks are significant contributors to the global obesity epidemic. A typical 20-ounce soda contains 15 to 18 teaspoons of sugar and upwards of 240 calories. A 64-ounce cola drink could have up to 700 calories. People who consume such drinks do not feel as full as if they had eaten the same number of calories from solid food and therefore do not compensate by eating less. While healthy diets are challenging for most populations, low income levels and poor education are associated with less healthy diets.

You might also like:

Excess weight and type-2 diabetes linked to 16% of cancers in the UK

and

Weight loss surgery to treat T2DM

T2DM brief epidemiology

Almost 4.6m people in the UK and 30m Americans are living with diabetes:  90% of whom have T2DM. It is estimated that 12.3m people in the UK and some 70m in the US are considered pre-diabetic, which is when you have high blood glucose levels, but not high enough to be diagnosed with diabetes. The first WHO Global report on diabetes published in 2016 suggests that 422m adults (1 in 11) worldwide are living with the condition, which has quadrupled over the past three decades. The International Diabetes Federation (IDF) estimates that this figure will rise to 642m by 2040.  A further challenge is the undiagnosed. A December 2017 paper in Nature Reviews: Endocrinology suggests 46% of all cases of diabetes globally are undiagnosed and therefore at enhanced risk of complications. Until complications develop, most T2DM patients are managed within primary care, which constitutes a significant part of general practice activity. International data suggest that medical costs for people with diabetes are two to threefold greater than the average for people without diabetes.
 
T2DM treated but not cured

The most common therapy for T2DM patients who are overweight is metformin, which is usually prescribed when diet and exercise alone have not been enough to control your blood glucose levels. Metformin reduces the amount of sugar your liver releases into your blood and also makes your body respond better to insulin. Insulin is a hormone produced by your pancreas that allows your body to use sugar from carbohydrates in food that you eat for energy or to store glucose for future use. The hormone helps to keep your blood sugar levels from getting too high (hyperglycaemia) or too low (hypoglycaemia). Metformin does not cure T2DM and does not get rid of your glucose, but simply transfers your excess sugar from your blood to your liver. When your liver rejects your excess sugar, the medicine passes the glucose onto other organs: kidneys, nerves, eyes and heart. Much of your excess sugar gets turned into fat and hence you become overweight or obese. T2DM has long been understood to progress despite glucose-lowering therapy, with 50% of patients requiring insulin therapy within 10 years. This seemingly inexorable deterioration in control has been interpreted to mean that T2DM is treatable but not curable. Research briefly described in this Commentary suggests that T2DM can be beaten into ‘remission’, but it requires losing a lot of weight and keeping it off.
 
Reversing T2DM

Over the past decade a series of studies, led by Roy Taylor, Professor of Medicine and Metabolism at the University of Newcastle, England and colleagues from Glasgow University have explored the notion that losing weight could be the solution for controlling T2DM and lowering the risk of debilitating and costly complications.
 
Findings of a study in the December 2017 edition of the  Lancet, suggested that nearly 50% of people living with T2DM who had participated in a low-calorie liquid diet of about 800 calories a day for three to five months had lost weight and had reverted to a non-T2DM state. The study was comprised of 298 adults between 20 and 65 who had been diagnosed with T2DM within the past six years drawn from 49 primary care practices in Scotland and Tyneside in England. Half of the practices put their patients on the low-calorie diet, while the rest were in a control group and received the standard of care of anti-diabetic medicines to manage their blood glucose levels. About 46% of 149 individuals with T2DM who followed a weight loss regimen achieved ‘remission’, which the study defined as a HbA1c of less than 6.5% after one year. Only 4% of the control group managed to achieve ‘remission’. ‘Remission’ rather than ‘cure’ was used to describe the reversal of T2DM because if patients put weight back on, they may become diabetic again. Results improved according to the amount of weight lost: 86% of those who lost more than 33 pounds attained remission, while 57% of those who lost 22 to 33 pounds reached that goal.
 
Another paper by Taylor and his colleagues published in the October 2018 edition of Cell Metabolism, examined reasons why substantial weight loss - (15kg) in some patients - produces T2DM remission in which all signs and symptoms of the condition disappear, while in other patients it does not. Using detailed metabolic tests and specially developed MRI scans, Taylor observed that fat levels in the blood, pancreas and liver were abnormally high in people with T2DM. But after following an intensive weight loss regimen, all participants in the study were able to lower their fat levels. As fat decreased inside the liver and the pancreas, some participants also experienced improved functioning of their pancreatic beta cells, which store and release insulin, controls the level of sugar in their blood and facilitates glucose to pass into their cells as a source of energy. The likelihood of regaining normal glucose control depends on the ability of the beta cells to recover. But, losing less than 1gm of fat from your pancreas through diet can re-start your normal production of insulin and thereby reverse T2DM.
 
“The good news for people with T2DM is that our work shows that you are likely to be able to reverse T2DM by moving that all important tiny amount of fat out of your pancreas. At present, this can only be done through substantial weight loss,” says Taylor.

While a significant proportion of participants in Taylor’s study responded to the weight loss program and achieved T2DM remission, others did not. To better understand this, researchers focused on 29 participants who achieved remission after dieting and 16 who dieted but continued to have T2DM. Taylor and his colleagues observed that people who were unable to restart normal insulin production had lived with T2DM for a longer time than those that could. Individuals who had lived with T2DM for an average of 3.8 years could not correct their condition through weight loss, while those who had the condition for an average of 2.7 years were able to regain normal blood sugar control.

“Many [patients] have described to me how embarking on the low-calorie diet has been the only option to prevent what they thought - or had been told - was an inevitable decline into further medication and further ill health because of their diabetes. By studying the underlying mechanisms, we have been able to demonstrate the simplicity of T2DM and show that it is a potentially reversible condition. but commencing successful major weight loss should be started as early as possible,” says Taylor.
 
Click on Newcastle University to find out more information about reversing T2DM by weight loss.
 
Bridging the gap between science and policy

Taylor and his colleagues describe their research findings as “very exciting” because “they could revolutionise the way T2DM is treated”, but caution that a series of management issues will need to be overcome before their therapy becomes common practice. This includes, (i) familiarizing primary care doctors and T2DM patients with the treatment regimen, (ii) establishing a generally accepted standard for what actually constitutes “remission”. Taylor and colleagues recommend “remission” to be when a patient has not taken diabetes medicines for at least two months and then has two consecutive HbA1c levels, taken two months apart, which are less than 6.5%. Researchers also recommend that data on T2DM reversal rates should be routinely collected, stored, analysed and reported.

Notwithstanding, the ‘elephant in the room’ is the vast extent of diabesity, the eye-watering rate at which it is growing and the general ineffectiveness of policy makers and prevent programs to dent the burden. Research findings presented at the 2018 European Congress on Obesity in Vienna emphasize the magnitude of the problem. If current trends continue, almost a quarter (22%) of the world’s population will be obese by 2045 (up from 14% in 2017), and 12% will have T2DM (up from 9% in 2017). Findings also suggest that in order to prevent the prevalence of T2DM from going above 10% by 2045, global obesity levels must be reduced by 25%. The problem is no less grave at the national level. For example, in the UK, if current trends continue obesity will rise from 32% today to 48% in 2045, while diabetes levels will rise from 10.2% to 12.6%, a 28% rise. This is unsustainable. Here’s the challenge for policy makers.

To stabilise UK diabetes rates over the next 25 years at 10%, which is high and extremely costly, obesity prevalence must fall from 32% to 24%. Similarly, in the US, if current trends continue over the next 25 years, then to keep diabetes rates stable over the same period, obesity in the US would have to be reduced by 10%: from 38% today to 28%.
 
Takeaways

Taylor and his colleagues have delivered a simple and cheap solution to one of the biggest burdens of the 21st century. But unless there is effective strategy to implement this solution the four decades of research undertaken by Taylor and his colleagues will be wasted. Previous Commentaries have described the vast and crippling burden of diabesity and the failure of well-funded programs to make any significant dent in this vast and escalating burden, which is out of control. We have suggested, this is partly because, at the operational level, programs have tended to be predicated upon inappropriate, old fashioned, 20th century organizational methods and technology and focused on “activities” rather than “outcomes”. At a policy level, government agencies have systematically failed to slow the rise of processed food becoming the “new tobacco.  Most UK endeavours to reduce the burden of diabesity are like putting up an umbrella to fend off a tsunami. This must change if we are to harness and effectively deploy the research findings of Professor Taylor et al.
view in full page