Publications


Sponsored
  • Experts have called for the worldwide eradication of cervical cancer, but this is not likely to happen for a long time
  • Significant progress has been made to eliminate cervical cancer in developed countries
  • The overwhelming burden of cervical cancer falls disproportionately on women in low- to middle-income countries (LMIC)
  • LMIC have relatively low levels of awareness of cervical cancer, patchy prevent programs and limited treatment options
  • Over 80% of cervical cancer cases and deaths occur in LMIC
  • Cervical cancer is the fourth most common cancer in women worldwide
  • In 2018 there were an estimated 680,000 new cases and 311,000 deaths from the disease worldwide
  • Cervical cancer is caused by sexually acquired infection from high-risk strains of the human papilloma virus (HPV)
  • The majority of women will be infected with HPV at some point in their life
  • HPV also causes genital warts and cancers of the head and neck and is also linked to cancers of the anus, vulva, vagina, penis and oropharynx
  • HPV vaccines protect against 70% of cervical cancers and about 90% of genital warts
  • Regular screening is also recommended to reduce the incidence of cervical cancer
 
Challenges to eradicate cervical cancer globally

Cervical cancer is a killer disease, which only affects women. It affects women of all ages from schoolgirls to grandmothers, but it is significantly more prevalent between the ages of 30 and 45.
 
The cervix, also known as the neck of the womb, connects a woman's womb and her vagina.
 
Lancet study raises hope of eradicating cervical cancer
 
Research findings published in the June 2019 edition of The Lancet suggest that HPV vaccination, which has been available to adolescent girls in wealthy developed countries since 2007, has led to a dramatic reduction in the number of HPV infections, precancerous cervical lesions and anogenital warts and provides hope of eradicating cervical cancer. Marc Brisson, Professor in the Department of Social and Preventative Medicine, Laval UniversityCanada, who led the research - a meta-analysis of over 65 former studies covering 60m people - said: "We will see reductions [in cervical cancer] in women aged 20-30 within the next 10 years, and eradication  of the disease [defined as <4 cases per 100,000] might be possible if sufficiently high vaccination coverage can be achieved and maintained". Over the past two decades, the incidence rates of cervical cancer in developed countries have fallen significantly, and between 1955 and 1992, the incidence rate of the disease decreased 70% in the US. These falls are attributed to effective nationwide screening.
 
Epidemiology

Cervical cancer is the fourth most common cancer in women worldwide and second for women between 15 and 44. In 2018 there were an estimated 680,000 new cases and 311,000 deaths from the disease worldwide. The overwhelming majority of cases are caused by two specific strains of the human papilloma virus (HPV). HPV infection and early cervical cancer typically do not present noticeable symptoms, and cervical cancer may take 20 years or longer to develop after an HPV infection. The overwhelming global burden of the disease falls disproportionately on women in low- to middle income countries (LMIC). There is a significant and growing gap in the incidence and mortality rates of cervical cancer between developed nations and LMIC. Despite international efforts, it seems unlikely that this gap will be narrowed in the medium term.
 
In this Commentary
 
This Commentary describes the spread of HPV, the vaccines developed to prevent infection from specific high-risk strains of the virus and recommended vaccination regimens. We describe the nature and significance of complementary screening programs and present evidence to suggest that women who fail to get screened are more likely to contract cervical cancer in later life than women who are screened. HPV vaccination programs are more prevalent in developed economies and are associated with a significant reduction in the incidence rates of cervical cancer. This suggests that the battle to eliminate cervical cancer is being won in some wealthy developed nations. Australia is positioned to become the first country in the world to eliminate cervical cancer. Despite substantial global efforts to reduce the incidence rates of cervical cancer, the gap in preventing, diagnosing and treating the disease between wealthy nations and LMIC is significant and growing. We conclude by suggesting that to eradicate cervical cancer, screening and prevention programs must be linked to easily accessible and effective treatment.
 
The spread of HPV
 
Over 70% of cervical cancer is caused by two high-risk strains of HPV. Most women will contract HPV at some stage during their life, but this usually clears-up on its own without the need for any treatment. HPV is most commonly spread during vaginal, anal or oral sex. The virus can be passed even when an infected person has no signs or symptoms. If you are sexually active you can get HPV, even if you only have sex with one partner. Notwithstanding, the risk increases with the number of new sexual partners and their sexual histories. You also can develop symptoms years after you have sex with someone who is infected. This makes it hard to know when you first became infected.
  
HPV vaccines
 
The US Food and Drug Administration (FDA) has approved three vaccines, which prevent infection with disease-causing HPV types. These are Gardasil, Gardasil 9 and Cervarix. All three vaccines prevent infection with HPV types 16 and 18 in women who have not already been infected by these types. These are two high-risk HPV’s that cause about 70% of cervical cancers and an even higher percentage of some of the other HPV-caused cancers. Gardasil also prevents infection with HPV types 6 and 11, which cause 90% of genital warts. Gardasil 9 prevents infection with the same four HPV types, plus five additional cancer-causing types.
 
About 79m Americans are currently infected with HPV, with roughly 14m people becoming newly infected in the US each year. In the UK, HPV is present in one in three people and 90% of individuals will come into contact with some form of the virus in their lifetime. About 80% of sexually active people are infected with HPV at some point in their lives, but most people never know they have the virus. Whitfield Growdon, a surgical oncologist at the Massachusetts General Hospital and professor at the Harvard University Medical School describes the HPV vaccination as, “one of the most meaningful interventions for reducing cervical cancer”; see video below.

 
 
Who should get vaccinated?

All girls and boys aged between 11 and 12 should get the HPV vaccination. Every year in the US, over 13,000 males contract cancers caused by HPV. Catch-up HPV vaccines are recommended for girls and women through the age of 26, and for boys and men through the age of 21, if they did not get vaccinated when they were younger. HPV vaccination is also recommended for the following people, if they did not get vaccinated when they were younger: (i) young men who have sex with men through the age of 26, (ii) young adults who are transgender through the age of 26 and (iii) young adults with certain immunocompromising conditions (including HIV) through the age of 26.
 
Early cervical cancer is asymptomatic
 
Because early cervical cancer is asymptomatic, it is important for women to have regular Papanicolaou (Pap) smears - also called Pap tests - to detect any precancerous changes in the cervix that might lead to cancer. This is in addition to the HPV vaccination. In England women are invited to have Pap smears every three years between the ages of 25 and 49, when rates of cervical cancer are at their peak, and every five years between 50 and 65. Other international screening guidelines recommend that women aged 21 to 29 have a Pap smear every three years. Women aged 30 to 65 are advised to continue having a Pap test every three years, or every five years if they also combine it with an HPV DNA test. Women over 65 can stop testing if they have had three consecutive normal Pap tests, or two HPV DNA and Pap tests with no abnormal results.
 
The HPV DNA test determines the most likely cause of cervical cancer by looking for pieces of DNA in cervical cells and is recommended for women over 30 and not for women under 30. This is because women in their 20s tend to be more sexually active and therefore are more likely (than older women) to have an HPV infection that will go away on its own. Results of an HPV DNA test carried out on a woman in her 20s is not as significant as in and older woman and also may be confusing. The HPV DNA test can also be used in women who have slightly abnormal Pap test results to find out if they might need more testing or treatment.
 

The Pap smear/test
 
The Pap smear or Pap test is a method of cervical screening used to detect potentially precancerous and cancerous processes in your cervix. During the routine procedure, cells from your cervix are gently scraped away and then examined for abnormal growth. Abnormal findings are often followed-up by more sensitive diagnostic procedures and if warranted, by interventions that aim to prevent progression to cervical cancer. Detecting cervical cancer early with a Pap smear significantly increases the chances of a cure. A Pap smear can also detect changes in your cervical cells, which suggest you might develop cancer in the future. In the two videos below Growdon describes the Pap smear and other tests for diagnosing cervical cancer.
 

What is a Pap smear test?
 
 
Diagnostic tests for cervical cancer
 
 Women failing to have the Pap test are 6-times at greater risk of cervical cancer
 
There is evidence to suggest that women over 50 who fail to have a regular Pap smear have a much higher risk of developing cervical cancer compared with other women the same age who have a history of regular screening. Research carried out by Cancer Research UK and reported in 2014 investigated the utility of regular cervical cancer screening after 50, and whether 64 was an appropriate age to stop screening and concluded “yes” and “yes”. The study compared the screening history of 1,341 women between 65 and 83 in England and Wales who were diagnosed with cervical cancer over a five-year period, with 2,646 women of the same age without the disease. Findings suggest that women who did not attend screening tests were six times more likely to develop cervical cancer between 65 and 83 compared with women that did. 
 
Australian the first country to eradicate cervical cancer
 
Australia is well positioned to become the first country in the world to eradicate cervical cancer. This is largely due to national vaccination and screening programs, which could see the disease effectively eliminated as a public health issue within the next two decades. In 2007, Australia launched a national publicly-funded school immunisation program to reduce HPV, which complemented a national  cervical cancer screening program that was launched in the 1990s. These have been shown to reduce the incidence of cervical cancer and significantly increase early diagnosis when the disease is curable.
 
A research paper about the Australian initiative published in the January 2019 edition of The Lancet Public Health concludes that, “the annual incidence of cervical cancer in Australia is likely to decrease to fewer than six new cases per 100 000 women by 2020 (range 2018–22) and to fewer than four cases per 100 000 women by 2028 (2021–35). The annual incidence of cervical cancer could decrease to one new case per 100 000 by 2066 (2054–77) if the existing HPV-based screening program continues in cohorts who are offered the nonavalent vaccine”; [a nonavalent vaccine works by stimulating an immune response against nine different antigens, such as nine different viruses or other microorganisms]. According to Suzanne Garland, Professor and Clinical Director of Microbiology and Infectious Diseases at the Royal Women’s Hospital, Melbourne, Australia, who led the research, “within 40 years the number of new cases of cervical cancer [in Australia] is projected to drop to just a few”.
 
The two worlds of cervical cancer
 
Global efforts to reduce the incidence rates of cervical cancer have focused on HPV vaccination  and the Pap test. Although experts are optimistic about eliminating cervical cancer in developed nations, which have advanced healthcare systems and extensive HPV vaccination, screening and treatment programs, they are significantly less sanguine about eradicating the disease in LMIC where there are relatively low levels of awareness of cervical cancer, a dearth of  preventative strategies, limited expertise and a narrow band of treatment options. This results in the disease being identified late when it is at an advanced stage, which leads to higher rates of morbidity and death. Indeed, 85% of all cases and cervical cancer deaths occur in LMIC, where the death rate is 18 times higher than in wealthy nations.
 
Cervical cancer a challenge for LMIC
 
The gap in preventing, diagnosing and treating cervical cancer between wealthy nations and LMIC is  described in a paper published in the November 2017 edition of Gynecologic Oncology Reports and suggests that, “Developing countries continue to bear a disproportionate percentage of the global cervical cancer burden. Investigations into the growing gap in incidence and mortality between developed nations and LMIC have cited persistent financial, infrastructural and educational limitations as key drivers. Pervasive lack of access to both preventative and definitive care has left a substantial portion of cervical cancer patients with minimal options for disease management”.
 
WHO strategy to eliminate cervical cancer
 
Recognising this disparity, in 2018, the Director-General of the World Health Organization (WHO) announced a call to action for the eradication of cervical cancer as a public health problem. In January 2019, the Executive Board of the WHO requested the Director General to develop a draft strategy to accelerate cervical cancer elimination, with clear targets for the period 2020 - 2030.
 
Vaccination and screening must be linked to effective therapies
 
The expansion of screening programs for cervical cancer in LMIC is only part of the answer to closing the gap with developed nations and eradicating cervical cancer globally. It is imperative that screening is linked to increased access to effective treatment for women with cervical cancer, particularly in its early stages when it is still curable.  In LMIC there is often not only reduced access to preventive HPV vaccines and screening, but limited access to treatment and trained personnel. Notwithstanding, there is evidence to suggest that, in LMIC less-invasive and less–resource-intensive treatment options can be effective and are increasingly being made available.
 
Late presentation of cervical cancer in LMIC
 
Women from LMIC generally seek treatment for cervical cancer only after the presentation of symptoms when the disease is advanced and challenging to treat. Also, they often lack awareness of the disease and ways to prevent it. Further, in some regions of the world, cultural norms and myths about cervical cancer pose additional barriers to prevention. Despite such obstacles, the disease can be prevented at low cost by healthcare providers employing relatively simple techniques to screen women for precancerous conditions and treat abnormal tissue early. Among the most promising low cost and low-tech screening alternatives to the Pap smear, is visual screening, which only requires either simple vinegar or iodine solutions and the eye of a trained healthcare provider to spot abnormal tissue.
 
Screening linked to effective therapy
 
Increasingly, these simply tests are being linked with effective treatment. Increasingly, in LMIC relatively cheap and simple therapies are being used to either destroy or remove abnormal cervical tissue, depending on the severity, location and size of the affected area. Two such procedures include cryotherapy and loop electrosurgical excision procedure (LEEP). The former uses extremely low temperatures to destroy abnormal tissue and requires no electricity. The latter involves using a thin wire to remove lesions in the affected area. While this procedure requires more medical equipment than cryotherapy, it allows tissue to be removed for analysis, reducing the possibility that advanced cancer will go unnoticed. Although many LMIC have had cervical cancer prevention programs and simple treatment strategies in place for some time, some have failed to reduce death rates of the disease.
 
Radiotherapy and cervical cancer in LMIC
 
Research findings published in the May 2019 online edition of The Lancet Oncology suggest that the availability of radiotherapy in LMIC (where gross national income is <US$12,000 a year) would generate millions of productive life years and billions of dollars in economic benefits for the patients' families and communities. The study suggests that implementing a 20-year strategy for radiotherapy to treat cervical cancer in LMIC between 2015 and 2035, in parallel with an HPV vaccination program, would save the lives of some 9.4m women and provide a net benefit to economies of US$151.5bn as a direct result of women living longer and more productive lives.

According to Danielle Rodin, lead author and Radiation Oncologist at the Princess Margaret Cancer Centre, University of Toronto, Canada, "Vaccination is hugely important, but we can't neglect the millions of women who are contracting cervical cancer and dying in pain without access to treatment. These are women who have curable cancers: even advanced cervical cancer can be cured with radiotherapy. The possibility exists to make this treatment universally available". Radiation therapy makes small breaks in the DNA inside cells. This stops cancer cells from growing and dividing and causes them to die. Unlike cisplatin therapy, [an anti-cancer ("antineoplastic" or "cytotoxic") chemotherapy], which usually exposes the whole body to cancer-fighting drugs, radiation therapy is usually a local treatment.

 
According to the 2019 Lancet Oncology study, HPV vaccination would result in a 3.9% reduction in cervical cancer incidence over the 20-year study period; assuming a best-case scenario of vaccinating every 12-year-old girl in the world starting in 2014. By 2072, when the first vaccinated cohort reaches 70, there would be a 22.9% reduction in incidence, still leaving 41.6m in need for therapy over that time period.

We know that when administered together (chemoradiation) you can give lower doses of both and get a better kill-rate on the tumour. This is now the backbone of cervical cancer therapy”, says Growdon; see video below.

 
 
Abu Dhabi’s endeavours to reduce cervical cancer
 
For some years, experts have discussed religious and cultural barriers to cervical cancer screening and drew attention to the relatively low levels of cervical cancer awareness and screening for women in Middle Eastern Arab countries. Meta-analysis of cervical cancer studies conducted in Arab countries between January 2002 and January 2017 and published in the December 2017 edition of Nursing & Health Sciences, suggest that in Arab speaking countries there tends to be, “low knowledge of and perceptions about cervical screening among Arab women, the majority of whom are Muslim. Factors affecting the uptake of cervical cancer screening practices were the absence of organized, systematic programs, low screening knowledge among women, healthcare professionals' attitudes toward screening, pain and embarrassment, stigma, and sociocultural beliefs”.
 
The success of HPV vaccination in Abu Dhabi and the UAE
 
Notwithstanding, there are signs that this is changing. Leading such changes is Abu Dhabi of the United Arab Emirates (UAE). Over a decade ago, a mandatory free HPV vaccination program for school girls was introduced by Abu Dhabi’s Ministry of Health and Prevention and extended in 2013 to include women between 18 and 26. Also, the Ministry recommends that woman aged 25 to 65 years get a Pap smear every three to five years. Since 2018, HPV vaccinations have been provided free and compulsory for all school girls in Dubai and the Northern Emirates following a campaign to raise awareness.
 
Although the UAE is among the few countries to have relatively low incidence rates of cervical cancer, the disease still ranks as the third most frequent cancer among women in the UAE and the third most frequent cancer among women between 15 and 44. Estimates suggest that every year, 93 women are diagnosed with cervical cancer and 28 die from the disease in the UAE. Although Abu Dhabi is successfully leading the fight against cervical cancer and provides a roadmap for others to follow, the incidence of cervical cancer in the Middle East generally is expected to more than double by 2035 (>33,000 cases) and be responsible for more than 18,000 deaths. In some countries including Morocco and Saudi Arabia, low societal awareness and relatively low levels of screening results in about one in four women with HPV.
 
 Takeaways
 
As cervical cancer screening and prevention programs have been growing and extending their reach, so increases the need to provide access to effective treatment. Despite growing awareness of the disease and global efforts to increase availability of appropriate resources, cervical cancer remains prevalent particularly in LMIC where effective treatment has not become widespread. In many LMIC, the default option is often to do nothing, which results in certain death. Researchers and policy makers should consider focusing their activities on how to best to reconcile the use of existing resources with the expected impact on the quantity and quality of life. Although gaps in oncological resources and barriers to treatment still exist, the good news is that there is increased political will and international attention to improve access to safe and effective treatment of cervical cancer. Notwithstanding, eradicating the disease globally appears to be more of a theoretical possibility than a medium term reality.
view in full page
  • AstraZeneca has turned traditional biopharma R&D on its head and is targeting early stage cancer
  • This strategy benefits from  some of AstraZeneca’s R&D endeavours
  • But the strategy faces strong headwinds, which include significant technological and market challenges and substantial Competition from at least two unicorns
  
AstraZeneca’s strategy to target early cancer

 
Will José Baselga’s gamble pay off?
 
Baselga is AstraZeneca's new cancer research chief who has turned traditional biopharmaceutical drug development on its head by announcing AstraZeneca’s intention to target early- rather than late-stage cancer. “We need to spend our resources on those places where we can cure more people and that’s in early disease”, says Baselga, who knows that early detection can significantly improve patient survival rates and quality of life, as well as substantially reducing the cost and complexity of cancer treatment. Baselga also must know his strategy is high risk. Will it work?
 
In this Commentary
 
In this Commentary we discuss the drivers and headwinds of AstraZeneca’s strategy to increase its R&D focus on early stage cancer. But first we briefly describe cancer, the UK’s situation with regard to the disease and explain why big pharma targets advanced cancers. Also, we provide a brief description of AstraZeneca’s recent history.  
 
What is cancer?

Cancer occurs when a normal cell’s DNA changes and multiplies to form a mass of abnormal cells, which we refer to as a tumour. If not controlled and managed appropriately the tumour can spread and invade other tissues and organs. In the video below Whitfield Growdon, a surgical oncologist at the Massachusetts General Hospital in Boston US, and a Professor at the Harvard University Medical School explains.
 
 
The UK’s record of cancer treatment
 
In the UK cancer survival rates vary between types of the disease, ranging from 98% for testicular cancer to just 1% for pancreatic cancer. Although the UK’s cancer survival rates lag those of other European countries, the nation’s overall cancer survival rate is improving. Several cancers are showing significant increases in five-year survival, including breast (80% to 86%), prostate (82% to 89%), rectum (55% to 63%) and colon (52% to 60%). Many of the most commonly diagnosed cancers in the UK have ten-year survival of 50% or more. With regard to cancer spending, compared with most Western European countries, including France, Denmark, Austria and Ireland, the UK spends less on cancer per person, with Germany spending almost twice as much per head.
 
Why big pharma targets advanced cancers?
 
Most cancers are detected late when symptoms have manifested themselves, which renders treatment less effective and more costly. When cancer is caught early, as in some cases of breast and prostate cancer, tumours tend to be removed surgically or killed by chemoradiation therapy (CRT) and this, for many people, provides a “cure”, although in some cases the cancer returns.
 
Studies in developed economies suggest that treatment costs for early-diagnosed cancer patients are two to four times less expensive than treating those diagnosed with advanced-stage cancer. Notwithstanding, there are physical, psychological, socio-economic and technical challenges to accessing early cancer diagnosis and these conspire to delay cancer detection. Thus, big pharma companies have traditionally aimed their new cancer drugs at patients with advanced forms of the disease. This provides pharma companies access to patients who are willing to try unproven therapies, which significantly helps in their clinical studies. And further, big pharma is advantaged because regulators tend to support medicines that slow tumour growth and prolong life, albeit by a few months.
 
Imfinzi: the only immunotherapy to demonstrate survival at three years
 
A good example of this is AstraZeneca’s immunotherapy drug called Imfinzi (durvalumab) used in unresectable stage-III non-small cell lung cancer (NSCLC), which has not spread outside the chest and has responded to initial chemoradiation therapy. Imfinzi works by binding to and blocking a protein called PD-L1, which acts to disguise cancer cells from your immune system. Imfinzi removes the disguise so that your immune system is better able to find and attack your cancer cells.
 
Findings presented at the June 2019 meeting of the American Society of Clinical Oncology (ASCO), build on a clinical study of Imfinzi reported  in the September 2018 edition of The New England Journal of Medicineand suggest that Imfinzi is the only immunotherapy to demonstrate survival at three years in unresectable stage-III NSCLC. AstraZeneca has begun a phase-3 clinical study of the PD-L1 inhibitor protein in stage II NSCLC patients.
 

 

Some information about AstraZeneca
 
AstraZeneca is a British-Swedish multinational biopharmaceutical company with a market cap of US$107bn and annual revenues of US$22bn. The company operates in over 100 countries, employs more than 61,000, has its headquarters in Cambridge, UK, and is recovering after patents expired on some of its best-selling drugs and a failed takeover bid in 2014 by Pfizer.
You might also be interested in:

A paradigm shift in cancer diagnosis
Patents, legacy drugs and new biologics
 
When pharma companies develop a new drug, they can apply for a patent that stops other companies from making the same thing. A patent lasts for 20 years, after which point other producers can replicate the drug and its selling price plummets. This happened to AstraZeneca’s when the patents expired on two of its best-selling drugs: Crestor (rosuvastatin), and Nexium (esomeprazole). The former is a statin  that slows the production of cholesterol by your body, lowers cholesterol and fats in your blood and is used to reduce your chances of heart disease and strokes. The latter is a drug used to treat symptoms of gastroesophageal reflux disease (GERD) and other conditions involving excessive stomach acid. Unlike some of its rivals, these were oral medicines based on small molecules that are easy for generic manufacturers to copy, which made AstraZeneca vulnerable to cut-price competition immediately after the legal protection of the drugs had expired. Notwithstanding, AstraZeneca’s new generation of biologic medicines, which it launched in the first decade of this century, are protected to some degree by the fact that they are difficult to copy as they are manufactured using cells, instead of big chemistry sets used to make conventional drugs.
 
AstraZeneca’s history with early stage cancer therapies
 
Baselga’s gamble benefits from the fact that AstraZeneca developed an interest in the detection of early stage cancer before his appointment. Today, AstraZeneca is active in clinical studies with other biopharma companies and leading academic institutions targeting earlier-stage therapies.

Working with collaborators over the past two decades, AstraZeneca has tested a number of drugs including Iressa (Gefitinib) and Tagrisso (Osimertinib) in cancers from stage-I onward, in some cases to try to shrink tumours before they are removed surgically. Tagrisso is a potential star-drug for AstraZeneca. It  was originally developed to treat a group of lung cancer patients whose cancer had become resistant to established tyrosine kinase inhibitor therapies such as Iressa  and Roche’s Tarceva (erlotinib). Tagrisso surprised AstraZeneca as it turned out to be better than Iressa and Tarceva when used in untreated patients with epithelial growth factor receptor (EGFR) mutations. EGFR is a protein present on the surface of both normal cells and cancer cells, and are most common in people with lung adenocarcinoma (a form of NSCLC), more common with lung-cancer in  non-smokers, and are more common in women.

 
Epithelial growth factor receptor (EGFR)
 
Think of EGFR as a light switch. When growth factors (in this case tyrosine kinases) attach to EGFR on the outside of the cell, it results in a signal being sent to the nucleus of the cell telling it to grow and divide. In some cancer cells, this protein is overexpressed. The result is analogous to a light switch being left in the "on" position, telling a cell to continue to grow and divide even when it should otherwise stop. In this way, an EGFR mutation is sometimes referred to as an "activating mutation". Tagrisso "targets" this protein and blocks the signals that travel to the inside of the cell and growth of the cell stops. In 2003, when AstraZeneca received regulatory approval of Iressa we had little understanding about EGFR. Today however about 50% of drugs approved for the treatment of lung cancer address this particular molecular profile.

Technological challenges
 
Baselga’s gamble is assisted by advances in  liquid biopsies, which work by detecting fragments of malignant tumour DNA in the bloodstream to identify oncogenic drivers, which help treatment selection. The challenge of this approach is that tumours shed meniscal amounts of circulating tumour DNA (ctDNA), which significantly raises the difficulty of detecting the genetic signals that oncologists need to identify specific cancers and select treatments. ctDNA should not be confused with circulating free DNA (cfDNA), which is a broader term that describes DNA that is freely circulating in the bloodstream but is not necessarily of tumour origin.
 
The good news for Baselga is that in recent years looking for ctDNA has become a viable proposition because of improvements in DNA sequencing technologies, (see below) which make it possible to scan fragments and find those few with alterations that may indicate cancer. While other blood-based biomarkers are being investigated, the advantage of ctDNA is that it has a direct link to a tumour and can be very specific at identifying cancer.  ctDNA also provides a means to profile and monitor advanced stage cancers to inform treatments.
 
Notwithstanding, a paper published in the June 2018 edition of the Journal of Clinical Oncology  suggests that, “there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer”, and therefore it is still early to adopt cfDNA analysis for routine clinical use.
 

Next generation genome sequencing
 
DNA sequencing is the process of determining the sequence of nucleotides in a section of DNA. The first commercialised method was “Sanger Sequencing”, which was developed in 1977 by Frederick Sanger, a British biochemist and double Nobel Laureate for Chemistry. Sanger sequencing was first commercialized by Applied Biosystems, and became the most widely used sequencing method for approximately 40 years. More recently, higher volume Sanger sequencing has been replaced by next-generation sequencing (NGS) methods, which cater for large-scale, automated genome analyses. NGS, also known as high-throughput sequencing, is a general term used to describe a number of different state-of-the-art sequencing technologies such as Illumina’s Solexa sequencing. These allow for sequencing of DNA and RNA significantly more quickly and cheaply than the previously used Sanger sequencing and has revolutionised the study of genomics and molecular biology.
 
Can AstraZeneca acquire success?
 
Baselgo’s gamble is not helped by the relative dearth of biotech companies engaged in clinical studies of early stage cancers. This significantly narrows AstraZeneca’s options if it wants to buy-in clinical-phase assets to fit with Baselga’s strategy.
 
Notwithstanding, there are at least two biotech companies of potential interest to AstraZeneca. One is Klus Pharma, founded in 2014, based in Monmouth Junction, New Jersey, US, and acquired for US$13m in October 2016 by the Sichuan Kelun Parmaceutical Co., a Chinese group based in Chengdu. Another is Dendreon, a biotech company based in Seal Beach, California, US. In 2014 Dendreon filed for chapter 11 bankruptcy. In 2015 its assets were acquired by Valeant Pharmaceuticals. In 2017, the Sanpower Group, a Chinese conglomerate, acquired Dendreon from Valeant for US$820m.  
 
Klus is recruiting patients with stage-I rectal cancer for a phase 1/2 clinical study of its anti-HER2 antibody drug, and is also working to extend its flagship product, Provenge (sipuleucel-T) as an option for patients with low-risk prostate cancer. Provenge is an autologous cellular immunotherapy. It was the first FDA-approved immunotherapy made from a patient’s own immune cells. Since its approval in 2010, nearly 30,000 men with advanced prostate cancer have been prescribed the therapy.  
 
Unicorns threaten AstraZeneca’s strategy for early cancer
 
Perhaps the biggest threat to Baselga’s gamble is competition from unicorns, which include  Grail, and Guardant Health.  
 
Grail
Grail was spun-out of the gene sequencing giant Illumina in 2016 and backed by more than US$1.5bn in funding, including money from Microsoft cofounder Bill Gates and Amazon founder Jeff Bezos. Grail is on a quest to detect multiple types of cancer before symptoms manifest themselves by way of a single, simple and cheap blood test to find fragments of ctDNA. Grail has made significant progress in its quest to develop highly sensitive blood tests for the early detection of many types of cancer, but it still has to engage in further large-scale clinical studies. At the 2018 ASCO conference, the company presented data from its Circulating Cell-free Genome Atlas (CCGA) project, which showed detection rates ranging from 59% to 92% in patients with adenocarcinoma, squamous cell and small cell lung cancers. The rate of false positives - a major concern for the oncology community - was under 2%.
 
In an effort to improve its technology and its outcomes, Grail has been working with researchers from the Memorial Sloan Kettering Cancer CenterMD Anderson Cancer Center and the Dana-Farber Cancer Institute, to develop a new assay. According to results published in the March 2019 edition of the journal Annals of Oncology, this joint venture has successfully come up with a method, which can detect mutations in NSCLC patients’ blood with high sensitivity. In some cases, the technology was useful when tissue biopsies were inadequate for analysis. The new tool uses Illumina’sultradeep next-generation sequencing", which involves reading a region of DNA 50,000 times, on average, to detect low-frequency variants. White blood cells were also sequenced to filter out "clonal hematopoiesis", which are noncancerous signals that can come from bone marrow. The sequencing information was then fed to a machine learning algorithm developed by Grail to determine mutation readouts.
 
Guardant Health
The other unicorn for AstraZeneca to watch is liquid biopsy developer Guardant Health. Founded in 2013, it is now an US$8bn precision oncology company based in Redwood City, California US. In April 2019 Guardant presented data of its oncology platform at the American Association of Cancer Research (AACR) in Atlanta, US. The platform leverages Guardant’scapabilities in technology, clinical development, regulatory and reimbursement to drive commercial adoption, improve patient clinical outcomes and lower healthcare costs.  In pursuit of its goal to manage cancer across all stages of the disease, Guardant has launched two next-generation sequencing liquid biopsy-based Guardant360 and GuardantOMNI tests for advanced stage cancer patients, for minimal residual disease/recurrence monitoring and for early detection screening, respectively.
 
The Guardant360 test is used to track patients’ responses to drugs and select most effective future therapies. It can identify alterations in 73 genes from cfDNA and has been used by more than 6,000 oncologists, over 50 biopharmaceutical companies and all 28 of the National Comprehensive Cancer Network Centers. 
 
Further, Guardant has launched a new liquid biopsy called Lunar.  At the April 2019 AACR meeting the company presented data of Lunar’s use as a screen for early-stage colorectal cancer. The assay was used to test plasma samples taken from 105 patients with colorectal cancer and 124 age-matched cancer-free controls. It is the test’s utility as a screen for early-stage disease that should interest AstraZeneca most. Guardant expects to position Lunar as something approaching a true diagnostic: a screening test to identify solid tumours in the healthy population. Wider clinical studies of Lunar are expected to start soon and Guardant believes that Lunar’s market opportunity as a cancer screen is some US$18bn and sees a US$15bn market opportunity in recurrence monitoring.
 
Also, in April 2019 Guardant acquired Bellwether Bio,  a privately held company founded in 2015, for an undisclosed sum. Bellwether is focused on improving oncology patient care through its pioneering research into the epigenomic content of cfDNA. This could aid  Guardant in its efforts to develop a cancer screen and further advance its research into cancer detection at earlier stages of the disease.
 
Guardant is well positioned to develop individual early indications of cancer. Grail, on the other hand,  is well positioned to develop a pan-cancer test. Notwithstanding, both companies need to engage in further lengthy, large-scale clinical studies before it will become clear which of these strategies will be more successful. However, both unicorns and other start-ups are potential competitors to AstraZeneca’s endeavours to target early cancer.
 
Takeaways

AstraZeneca’sproposed bold and risky shift in its R&D strategy is to be welcomed since the early detection and treatment of cancer should significantly enhance the chances of a cure, which would radically improve the quality of life for millions and substantially reduce the vast and escalating costs associated with the disease. AstraZeneca has some advantages since over the past two decade it has significantly enhanced its technology and been developing a platform of therapies for early stage cancer. Notwithstanding, for its strategy to target early stage cancer to be successful the company will have to overcome intense, fast growing, well-resourced competition and substantial technical and markets challenges.  
view in full page
  • People are living longer, the prevalence of age-related degenerative disc disease is increasing and sufferers are more and more turning to spinal implant surgery as a solution
  • As this significantly raises the burden on over-stretched healthcare systems, so is spine surgery increasingly becoming a key target for cost reduction within healthcare systems
  • This intensifies the pressure on manufacturers to innovate and make spinal implants more cost effective

Can 3D printing and the use of new alloys reduce the high costs of producing and marketing spinal implants?
 
On January 8th 2019 surgeons at Joseph Spinea specialist surgery centre based in Tampa Bay Florida, were the first in the US to implant a 3D printed interbody fusion device, which was produced  by Osseus Fusion SystemsThe company uses its proprietary 3D printing technology, also known as additive manufacturing,  to build spinal implants from titanium material that is optimized for bone fusion and biological fixation. In August 2018, a suite of Osseus’s devices received clearance from the US Food and Drug Administration (FDA) for a  range of heights and lordotic (inward spinal curvature) angles, which make them adaptable for a variety of patient anatomies. The interbody fusion devices work by being packed with biomaterials and bone grafts and inserted in between two vertebrae, where they fuse with the spine and work to prevent back pain.
 
In this Commentary
 
This Commentary explores whether 3D printing and the use of new alloys could be an appropriate strategy to help spine companies reduce  their production and sales costs and enhance their market positions. Our suggestions here complement a strategy, described in a previous Commentary, for MedTech companies to develop and implement digital strategies to enhance their go-to-market activities, strengthen the value propositions of products and services and streamline internal processes. The reasons spine companies might consider both strategies are because spinal implant markets, which are segmented  by type of surgery, product and geography, are experiencing significant competitive, regulatory, pricing and technological challenges as well as mounting consumer pressure for improved outcomes; and the business model, which served as an accelerator of their financial success over the past decade is unlikely to be effective over the next decade.
 
3D printing
3D printing is a process, which creates a three-dimensional (3D) object by building successive layers of raw material. Each new layer is attached to the previous one until the object is complete. In the healthcare industry, 3D printing is used in a wide range of applications, such as producing dental crowns and bridges; developing prototypes; and manufacturing surgical guides and hearing aid devices. Increasingly, 3D printing is being used for the production of spinal implants.

 
Spine surgery increasing significantly
 
An estimated US$90bn is spent each year in the US on the diagnosis and management of low back pain (LBP). LBP, caused by age related degenerative disc disease, is one of the most common and widespread public health challenges facing the industrialized world. It is estimated that the condition affects over 80% of the global population and inflicts a heavy and escalating burden on healthcare systems. Also, LBP affects  economies more generally in terms of lost production due to absenteeism, early retirement and the psychosocial impact caused by the withdrawal of otherwise active people from their daily activities. According to the American Association of Neurological Surgeons, more than 65m Americans suffer from LBP annually and the Chicago Institute of Neurosurgery and Neuroresearch suggests that by the age of fifty, 85% of the US population is likely to show evidence of disc degeneration. It is estimated that 10% of all cases of LBP will develop chronic back pain, which is one of the main reasons for people to seek surgical solutions and this significantly raises the burden on over-stretched healthcare systems.
 
Findings of a study published in the March 2019 edition of Spine, entitled, “Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States 2004 to 2015”, report that the rate of elective lumbar fusion surgeries in the US has increased substantially over the past decade. Such trends are indicative of most advanced industrial societies, which  are changing and ageing, primarily driven by improvements in life expectancy and by a decrease in fertility. This results in people living longer, reaching older ages and having fewer children later in life. Over the next decade, these market drivers are expected to make spine surgery a key target for cost reduction within healthcare systems and this, in turn, is likely to increase pressure on manufacturers of spinal implants to make spine surgery more cost effective.

 

The first surgery using a 3D printed spinal implant
 
The first surgery to implant a 3D printed interbody fusion device was carried out in China in August 2014, when surgeon Liu Zhongjun from Peking University Hospital successfully implanted an artificial 3D printed vertebra into a 12-year-old bone cancer patient to help him walk again. Liu first removed a tumour located in the second vertebra of the boy's neck before replacing it with the 3D printed implant between the first and third vertebrae to allow him to lift his head. “The customized 3D printed technology made the disc replacement stronger and more convenient than normal procedures”, said Liu.

You might also be interested in:

Age of the aged and low back pain
 
In July 2017, a team of doctors, led by Xiao Jianru, Professor of Orthopaedic Surgery at Shanghai Changzheng Hospital, China, treated a 28-year-old woman with a massive, rare neck tumour, by giving her a 3D printed spine. The patient had to have six consecutive cervical vertebrae replaced because they had been affected by the cancer, which was challenging to treat with chemotherapy. Cervical vertebrae, seven in total, which form your spine column in the neck are the most delicate bones in your body. The patient was discharged from the hospital after the operation. Reports suggest that she was able to walk, but had some difficulties turning her head.
 
First US company to receive FDA approval for 3D printed spinal implants
 
The first US  company to receive a 510(k) FDA approval for a 3D printed spinal implant was 4WEB Medical, in 2012. The company was founded in 2008 and since then has become a leader in 3D printed implant technology. Following FDA clearance, the company launched its proprietary and patented Truss Implant platform, which features a unique open architecture that allows for up to 75% of the implant to be filled with graft material and includes an anterior spine Truss System, a cervical spine Truss System, an osteotomy Truss System and a posterior spine Truss System. In April 2018,  at the annual meeting of the International Society for the Advancement of Spine Surgery (ISASS) 4Web announced that it has surpassed 30,000 implants worldwide of its proprietary Truss Implant Technology.
 
There is a plethora of established MedTech companies entering the 3D printing spinal implant market, which include Stryker, K2M, DePuy Synthes, Camber Spine, CoreLink, Medicrea, Renovis, NuVasive and Zimmer Biomet. With Stryker’s acquisition of K2M and DePuy Synthes’ acquisition of Emerging Implant Technologies GmbH (EIT), both in September 2018, the market for 3D printed spinal implants is positioned to grow rapidly over the next few years.
 
Increasing FDA approvals for 3D printed spinal implants
 
Significantly, spinal implants have become one of the most common cases of the FDA-cleared 3D printed medical devices. For instance, in 2018 Zimmer Biomet received FDA clearance for the company’s first 3D printed titanium spinal implantEIT received FDA approval in 2018 for its 3D printed multilevel cervical cage, which can treat multiple injuries in both the middle and top parts of the spine. Centinel Spine Inc, a US company based in Pennsylvania, which develops, manufactures and markets spinal devices used to treat degenerative disc disease, also received FDA clearance in 2018 for its 3D printed spinal implants called FLX devices, which are titanium fusion implants that work to stabilize vertebrae from the front of the spine in order to increase the healing process for patients.

You might also be interested in:

MedTech must digitize to remain relevant

 
3D printing medical devices market
 
The 3D printing medical devices market is projected to grow at a CAGR of 17.5% and reach US$2bn by 2022. Currently, the market is dominated by North America, followed by Europe, Asia Pacific and the rest of the world. Over the next decade, the Asia Pacific 3D printing medical devices market is expected to grow at the highest CAGR. Emerging markets are attractive for spine companies as they have large patient populations, which are growing fast, rising government healthcare expenditure, vast and rapidly increasing middle classes, rising income levels and rising obesity cases.
One example is India, with a middle class about twice the size of the US population, an economy growing at a rate of 7% year-on-year and a pro-business Prime Minister who has established himself as the country’s most formidable politician in decades and is committed to increasing healthcare spending. According to the World Bank’s March 2018 India Development Update the GDP of India had surpassed that of France and was on track to overtake the UK economy to make India the 5th largest economy in the world. Significantly, India’s GDP per capita has reached US$2,000, which is generally recognised by economists as a “tipping point”: when a country’s economic prospects improve, peoples’ confidence increases, and investment momentum remains at a desirable level for a long period. For instance, when the GDP per capita of China and South Korea reached US$2,000 their respective economies witnessed more than a decade of high growth with an average growth rate of about 10%. India appears to be on the cusp of something similar.
 
3D printing's competitive advantages
 
3D printing, although in its infancy, has the capacity to manufacture products of any complexity anywhere, at any time, which gives it a significant competitive-advantage over traditional manufacturing. Further, 3D printing is cheaper and quicker than traditional production methods because there is less machine, material, labour and inventory costs and less materials' waste. Complex designs can be created as a computer added design (CAD) model and then transformed into a reality in just a few hours. By contrast, traditional manufacturing methods can take weeks or even months to go from the design stage to a prototype and then onto the production process. Also, 3D printing is cost-effective in low production quantities and more environmentally friendly as the place of manufacture can be the same as the place of the product’s application.

The benefits of 3D printing specifically for spinal surgery include; (i) implants can be shaped to custom-fit patients, (ii) porosity and pore size can be personalized to a specific patient’s bone quality, which may improve integration. But perhaps the most significant potential advantage is bioprinting, where cells, growth factors and biomaterials are used to create living tissue.

 
Thinking beyond traditional metals used for spinal implants
 
Some spine companies are complementing their 3D printing endeavours by experimenting with new and stronger alloys. For the past two decades metals used for spinal implants have been mostly composed of cobalt chrome, titanium and stainless steel. The physical properties of these have prevented producers to reduce the size of spinal implants. But this is changing with the introduction of new alloys such as molybdenum-rhenium (MoRe), which is stronger than the traditional metals used for spine implants and has the potential to use less metal to achieve stronger, more durable constructs, while allowing for smaller sized products.

Already, MoRe is used for stents in cardiology and findings of a small animal study presented at the 2018 North American Spine Society meeting in Los Angeles suggested that MoRe is significantly more hydrophilic (having strong affinity to water) and therefore friendlier to bone when compared with cobalt chrome, titanium and stainless steel. This suggests MoRe might provide smaller rods with smaller pedicle screw heads, which decrease the prevalence of protruding, painful hardware in patients with wasting of the body due to severe chronic illness. Further, smaller spinal implants would be beneficial in minimally invasive spine surgery.

Another added benefit of MoRe is that it potentially decreases biofilm formations, which are typically caused by chronic medical device-related infections and allergenicity when compared to the traditional metals used in spine surgery. Bacteria are tougher to kill when they attach to the surface of a spinal implant, even before they form a biofilm. Research findings published in the December 2018 edition of Heliyon draws attention to the prevalence of the  antibiotic-resistant nature of bacterial biofilm infections on implantable medical devices and describes current state-of-the-art therapeutic approaches for preventing and treating biofilms. As the range of materials for spinal implants with improved biocompatibility, biodegradability and load bearing properties increase, so are biofilm infections expected to decrease.

 
Takeaways
 
Spine surgery is positioned to become a key target for cost reduction within healthcare systems over the next decade. This is because low back pain, caused by age related degenerative disc disease, is a common condition affecting most individuals at some point in their lives and increasingly people are turning to surgical solutions. As a consequence, we can expect increased pressure on stakeholders, including spinal implant manufacturers, to innovate to make spine surgery more cost effective. 3D printing and the use of new alloys, while in their infancy, are possible strategies to reduce the costs of producing spinal implants while improving patient outcomes.
view in full page
  • Two Boston Consulting Group studies say MedTech innovation productivity is in decline
  • A history of strong growth and healthy margins render MedTechs slow to change their outdated business model
  • The MedTech sector is rapidly shifting from production to solutions
  • The dynamics of MedTechs' customer supply chain is changing significantly and MedTech manufacturers are no longer in control
  • Consolidation among buyers - hospitals and group purchasing organisations (GPO) - adds downward pressure on prices
  • Independent distributors have assumed marketing, customer support and education roles
  • GPOs have raised their fees and are struggling to change their model based on aggregate volume
  • Digitally savvy new entrants are reinventing how healthcare providers and suppliers work together
  • Amazon’s B2B Health Services is positioned to disrupt MedTechs, GPOs and distributors 
  • MedTech manufacturers need to enhance their digitization strategies to remain relevant
 
MedTech must digitize to remain relevant
 
MedTech companies need to accelerate their digital strategies and integrate digital solutions into their principal business plans if they are to maintain and enhance their position in an increasingly solution orientated healthcare ecosystem. With growing focus on healthcare value and outcomes and continued cost pressures, MedTechs need to get the most from their current portfolios to drive profitability. An area where significant improvements might be made in the short term is in MedTechs' customer facing supply chains. To achieve this, manufacturing companies need to make digitization and advanced analytics a central plank of their strategies.
 
In this Commentary
 
This Commentary describes the necessity for MedTechs to enhance their digitization strategies, which are increasingly relevant, as MedTech companies shift from production to solution orientated entities. In a previous Commentary we argued that MedTechs history of strong growth and healthy margins make them slow to change and implement digital strategies. Here we suggest that the business model, which served to accelerate MedTechs' financial success over the past decade is becoming less effective and device manufacturers need not only to generate value from the sale of their product offerings, but also from data their devices produce so they can create high quality affordable healthcare solutions. This we argue will require MedTechs developing  innovative strategies associated with significantly increasing their use of digital technology to enhance go-to-market activities, strengthen value propositions of products and services and streamline internal processes.
 
MedTechs operate with an outdated commercial model
 
Our discussion of digitization draws on two international benchmarking studies undertaken by the Boston Consulting Group (BCG). The first,  published in July 2013 and entitled, “Fixing the MedTech Commercial  Model: Still Deploying ‘Milkmen’ in a Megastore World” suggests that the high gross margins that MedTech companies enjoy, particularly in the US, hide unsustainable high costs and underdeveloped commercial skills. According to BCG the average MedTech company’s selling, general and administrative (SG&A) expenses - measured as a percentage of the cost of goods sold -  is 3.5 times higher than the average comparable technology company. The study concludes that MedTechs' outdated business model, dubbed the “milkman”, will have to change for companies to survive. 
 
BCG’s follow-up 2017 study
 
In 2017 BCG published a follow-up study entitled, “Moving Beyond the ‘Milkman’ Model in MedTech”, which surveyed some 6,000 employees and benchmarked financial and organizational data from 100 MedTech companies worldwide, including nine of the 10 largest companies in the sector. The study suggested that although there continued to be downward pressure on device prices, changes in buying processes and shrinking gross margins, few MedTech companies “have taken the bold moves required to create a leaner commercial model”.
 
According to the BCG’s 2017 study, “Overall, innovation productivity [in the MedTech sector] is in decline. In some product categories, low-cost competitors - including those from emerging markets - have grown rapidly and taken market share from established competitors. At the same time, purchasers are becoming more insistent on real-world evidence that premium medical devices create value by improving patient outcomes and reducing the total costs of care”. The growth and spread of value-based healthcare has shifted the basis of competition beyond products, “toward more comprehensive value propositions and solutions that address the entire patient pathway”. In this environment, MedTechs have no choice but to use data to deliver improved outcomes and a better customer experience for patients, healthcare providers and payers.
 
MedTech distributors increasing their market power and influence
 
Although supply chain costs tend to be MedTechs' second-highest expense after labour, companies  have been reluctant to employ digital strategies to reduce expenses and increase efficiencies. As a consequence, their customer supply chains tend to be labour intensive relationship driven with little effective sharing of data between different territories and sales teams. Customer relations are disaggregated with only modest attention paid to patients and payors and insufficient emphasis on systematically collecting, storing and analysing  data to support value outcomes.   
As MedTech manufacturers have been slow to develop strong and effective data strategies, so MedTech distributors have increased their bargaining power through M&As and internationalisation. Some distributors have even assumed marketing, customer support and education roles, while others have launched their own brands. MedTechs' response to these changes has been to increase their direct sales representatives. However, consolidation among buyers - hospitals and GPOs -  and the extra downward pressure this puts on prices, is likely to make it increasingly costly for MedTechs to sustain large permanent sales forces. 

You might also be interested in:

Who should lead MedTech?

 
Advantages of distributors but no way to accurately measure sales performance

Notwithstanding, the distributor model is still common with MedTechs and has been successful in many markets for a long time. Independent distributors are often used when producers have small product portfolios. In smaller markets, distributors are employed primarily to gain economies of scale as they can combine portfolios of multiple companies to create a critical mass opportunity and  obtain better and faster access to markets.
 
MedTechs have a history of investing in sales force effectiveness (SFE) typically to increase the productivity of sales representatives. Sales leaders have some indication that this pays-off through incremental revenue growth and profits, but they struggle to assess the true performance of such investments not least because SFE includes a broad range of activities and also it is almost impossible to obtain comparative competitor data.
 
Changing nature of GPOs
 
GPOs also have changed. Originally, they were designed in the early 20th century to bring value to hospitals and healthcare systems by aggregating demand and negotiating lower prices among suppliers. Recently however they have raised their fees, invested in data repositories and analytics and have been driving their models and market position beyond contracting to more holistic management of the supply chain dynamics. Notwithstanding, many GPOs are struggling to change their model based on aggregate volume and are losing purchasing volume amid increasing competition and shifting preferences.
 
New entrants
The changing nature of MedTechs' customer supply chain and purchasers increasingly becoming concerned about inflated GPOs' prices have provided an opportunity for data savvy new entrants such as OpenMarketsThe companyprovides healthcare supply chain software that stabilizes the equipment valuation and cost reduction and aims to reinvent how healthcare providers and suppliers work together to improve the way healthcare equipment is bought and sold. OpenMarkets’ enhanced data management systems allow providers to better understand what they need to buy and when. The company represents over 4,000 healthcare facilities and more that 125 equipment suppliers; and provides a platform for over 32,000 products, which on average sell for about 12% less than comparable offerings. In addition, OpenMarkets promotes cost efficiency and price transparency as well as stronger collaboration between providers and suppliers.
 
Amazon’s B2B Health Services
 
But potentially the biggest threat to MedTech manufacturers, GPOs and distributors  is Amazon’s B2B Health Services, which is putting even more pressure on MedTechs to rethink their traditional business models and to work differently with healthcare providers and consumers. With a supply chain in place, a history of disrupting established sectors from publishing to food and a US$966bn market cap, Amazon is well positioned to disrupt healthcare supply chain practices, including contracting. In its first year Amazon’s B2B purchasing venture generated more than US$1bn and introduced three business verticals: healthcare, education and government. Already, hundreds of thousands of medical products are available on Amazon Business, from hand sanitizers to biopsy forceps. According to Chris Holt, Amazon’s B2B Health Services program leader, “there is a needed shift from an old, inefficient supply chain model that runs on physical contracts with distributors and manufacturers to Amazon's marketplace model”.

If you look at the way a hospital system or a medical device company cuts purchase orders, identifies suppliers, shops for products, or negotiates terms and conditions, much of that has been constrained by what their information systems can do. I think that has really boxed in the way that companies’ function. Modern business and the millennials coming into the workplace, can’t operate in the old way,” says Holt.

You might also be interested in:

Is the digital transformation of MedTech companies a choice or a necessity?


Millennials are used to going to Amazon and quickly finding anything they need; even the most obscure items. According to Holt, “A real example is somebody who wants to find peanut butter that is gluten-free, non-GMO, organic, crunchy and in a certain size. And they want to find it in three to five clicks. That’s the mentality of millennial buyers at home, and they want to be able to do the same things at work. . . . The shift from offline traditional methods to online purchasing is very significant. It is our belief that the online channel is going to be the primary marketplace for even the most premium of medical devices in the future. That trend is already proven by data. So, we’ve created a dedicated team within Amazon Business to enable medical product suppliers to be visible and participate in that channel.
MedTechs fight back
 
According to the two BCG reports, MedTech companies can fight back by using digital technologies to strengthen and improve their go-to-market activities. This, according to BCG, would enhance MedTechs' connectivity with their customers and help them to learn more about their needs. Indeed, employing digitization to improve customer-facing activities could help standardise order, payment and after-sales service behaviour by defining and standardizing terms and conditions. This could provide the basis to help MedTechs increase their access to a range of customers - clinicians, institutions, insurers and patients - and assist them to tailor their engagements to the personal preferences of providers and purchasers. This could provide customers with access to product and service information at anytime, anywhere and could form the basis to implement broader digitalized distribution management improvements, which focus on value-based affordable healthcare in the face of escalating healthcare costs and variable patient outcomes.
 
Predictive models
 
Many companies use predictive-modelling tools to forecast demand and geo-analytics to speed delivery and reduce inventories. Online platforms provide customers with an easy way to order products and services, transparently follow their shipping status and return products when necessary. Barcodes and radio-frequency identification (RFID) chips, which use electromagnetic fields to automatically identify and track tags that contain electronically stored information attached to products, help customers track orders, request replenishments and manage consignment stock.
 
Back-office improvements
 
Further, the 2017 BCG study suggests that MedTechs only have made limited progress in improving their back-office operations. Many manufacturers  have more employees in their back offices than they do in their customer-facing functions and fail to leverage economies of scale. There is a significant opportunity for MedTechs to employ digital strategies to enhance the management of their back-office functions, including centralizing certain activities that are currently conducted in multiple individual countries.
 
Takeaway
 
For the past decade MedTech manufactures have been slow to transform their strategies and business models and still have been commercially successful. Some MedTech companies are incorporating digital capabilities into their products by connecting them to the Internet of Things (IoT), which potentially facilitate continuous disease monitoring and management. Notwithstanding, such efforts tend to be isolated endeavours - “one-offs” - and are not fully integrated into companies’ main strategies. This could run the risk of MedTech executives kidding themselves that they are embracing digitization while underinvesting in digital technologies. The two BCG studies represent a significant warning since digitization is positioned to bring a step-change to the MedTech sector, which potentially could wound successful manufacturers if they do not change.
view in full page
  • Each year unhealthy diets are linked to 11m deaths worldwide a global study concludes
  • Red and processed meat not only cause disease and premature death from chronic non-communicable diseases (NCD) but also put the planet at unnecessary risk
  • Evidence suggests that the health benefits of a Mediterranean diet reduces the risk of NCDs and is better for the Planet

Eat like Greeks, live healthier lives and save our planet

 
Findings of an international research project about the relationship between diet and chronic diseases are reported in a paper entitled, “Health effects of dietary risks in 195 countries 1990-2017. A systematic analysis for the Global Burden of Disease Study 2017”, which is published in the April 2019 edition of The Lancet. The paper suggests that millions of people throughout the world consume an unhealthy diet comprised of  too much processed meat, sodium and sugar and too little plant-based foods, such as fruits and vegetables, whole grains and nuts. This results in a significant increase in the prevalence of chronic non-communicable diseases (NCD) such as coronary heart disease, cancer and diabetes and  each year causes some 11m avoidable deaths worldwide - 22% of all adult deaths: 10m from cardiovascular disease, 913,000 from cancer and some 339,000 from type-2 diabetes. According to the paper’s authors, “A suboptimal diet is responsible for more deaths than any other risks globally, including tobacco smoking, highlighting the urgent need for improving human diet across nations”.
 
In this Commentary
 
This Commentary reviews evidence of recent large-scale epidemiology studies, which suggest that “you are what you eat”.  Not only do unhealthy diets cause ill health and premature death for millions, they also harm the environment and push the Earth beyond its planetary boundaries. All the studies we describe conclude that we know the answer to this vast and escalating health problem: eat like Greeks or indeed the Japanese. Notwithstanding, changing the way populations collectively eat is a massive challenge facing governments, healthcare systems and individuals.
 
The Global Burden of Disease project
 
The Lancet paper’s findings described above are based on the Global Burden of Disease (GBD) enterprise, which is one of the world’s largest scientific collaborative research projects, which was started in the early 1990s by the World Bank to measure the impact of disability and death from hundreds of diseases worldwide. Over the past two decades its work has grown, and the endeavour has become institutionalized at the World Health Organization (WHO). Today, the GBD project is an international consortium of more than 3,600 researchers, its findings are updated annually and they influence health policy throughout the world.
 
Red meat and bowel cancer
 
Findings of a more narrowly focussed but nonetheless significant study, published in the April 2019 edition of the International Journal of Epidemiology warn that red-processed meat consumption is linked with bowel cancer.  According to Tim Key, the study’s co-author, Professor of Epidemiology and Deputy Director at Oxford University's Cancer Epidemiology Unit, “Results strongly suggest that people who eat red and processed meat four or five times a week have a higher risk of developing bowel cancer than those who eat red and processed meat less than twice a week . . . . There’s substantial evidence that red and processed meat are linked to bowel cancer and the World Health Organization classifies processed meat as ‘carcinogenic’ and red meat as ‘probably carcinogenic’”. Notwithstanding, Key warns that, “Diet studies are problematic because those who take part often either forget what they have eaten or fail to tell the truth”. Key also suggests that, “Most previous research [on diet and cancer] looked at people in the 1990s or earlier and diets have changed significantly since then”.
 
Chronic non-communicable diseases
 
Chronic non-communicable diseases (NCD) are largely caused by humans and are therefore preventable. Notwithstanding, they account for more than 70% of all deaths globally and emergent NCDs pose significant systemic challenges for both nation states and individuals. Forty percent of all adults in the world are overweight and 1.4bn suffer from hypertension: both critical risk factors of NCDs. In 2016, 18m people died from cardiovascular disease (CVD), representing 31% of all global deaths. In the US an estimated 92m adults are living with CVD. By 2030, 44% of the US adult population is projected to have some form of CVD. There are around 7m people living with heart and circulatory disease in the UK. Worldwide some 0.5bn people have diabetes and in 2018 there were 17m new cases of cancer worldwide. Although there are some encouraging signs associated with the slowing of the prevalence rates of NCDs globally, prevalence of NCDs is expected to rise because of population growth and aging, misaligned healthcare policies and institutional inertia.
 
The paradox of food insecurity and obesity
 
Paradoxically, food scarcity and obesity are both forms of malnutrition and represent a vast and escalating burden on the worlds limited and diminishing resources. This is because food insecurity can contribute to people being overweight and obese. Nutritious fresh foods often tend to be expensive, so when household resources for food become scarce, people choose less expensive foods that are often high in calories and low in nutrients. As a result, adult obesity rates continue to rise each year, from 11.7% in 2012 to 13.2% in 2016. In 2017 the World Health Organization estimated that more than one in eight adults, or more than 672m people in the world, were obese and 2bn were classified as overweight. A report from the Center for Strategic and International Studies, a think-tank based in Washington DC, US, suggests that worldwide each year, "Malnutrition costs US$3.5trn, with overweight- and obesity-related NCDs, such as cardiovascular disease and type 2 diabetes, adding US$2trn”.
 
The EAT-Lancet Commission on Food, Planet and Health
 
Not only do unhealthy diets result in NCDs and premature death, but they also harm the environment. The dual aspects of unhealthy diets causing disease and harming the planet are described in research conducted by the EAT-Lancet Commission on Food, Planet and Healthand reported in the January 2019 edition of  The Lancet.
EAT is an independent non-profit organisation based in Oslo, Norway, dedicated to food-system reform, which collaborated with The Lancet. The report took 3-years to complete and brought together 37 world-renowned scientists from 16 countries with expertise in health, nutrition, environmental sustainability, food systems, economics and political governance; and tasked them with reaching a consensus that defines a sustainable “healthy planetary diet”, which the authors suggest approximates a Mediterranean diet, see below.

The EAT-Lancet research, financed by the Wellcome Trust,analysed the diets of people in 195 countries using survey data, as well as sales data and household expenditure data to estimate the impact of unhealthy diets on the risk of death and morbidity from NCDs. The Commission’s authors provide a comprehensive picture of the consumption of 15 dietary factors across nations and quantify the potential impact of suboptimal intake of each dietary component on NCD mortality and morbidity among 195 countries. Also, researchers calculate mortality related to other risk factors,such as smoking and drug use, at the global level.

 

You might also be interested in:

Obesity: is processed food the new tobacco?
 

Criticism of the EAT-Lancet Commission
 
The EAT-Lancet Commission’s report has its critics. One is the UK’s National Farmers’ Union whose Vice President Stuart Roberts said, “Scientific communities agree that red meat plays a vital role in a healthy, balanced diet as a rich source of essential nutrients, minerals, amino acids and protein. It is overly simplistic to target one food group for a significant reduction in consumption, and it ignores its medically accepted role as a key part of a healthy, balanced diet   . . . It is clear that climate change is one of the greatest challenges of our time and British farmers are continuing to take action. A combination of policies and practises will be needed to enable farmers to meet their ambitions, but we must not forget the impact of a changing climate on food production”.
 
Benefits of red meat
 
Roberts is right to point out that red meat has health benefits. Heme iron, which is found in red meat (also in poultry, seafood and fish) is easily absorbed by your body and is a significant source of your dietary iron. Red meat also supplies you with vitamin B12 and zinc. The former is required for red blood cell formation, neurological function and DNA synthesis, and the latter helps stimulate the activity of at least 100 different enzymes and helps to keep your immune system working effectively. Further, red meat provides protein, which helps to build your bones and muscles. People have been eating meat for millennia and have developed digestive systems well equipped to handle it.

Notwithstanding, the overwhelming majority of red meat consumed in the developed world today is processed: raised in a factory environment, fed grain-based feed and given growth-promoting hormones and antibiotics and some animals, after being slaughtered, are further treated with nitrates, preservatives and various chemicals. The findings of all three studies described above demonstrate the harm of eating too much red and processed meat and stress the health and environmental benefits of a Mediterranean diet.

 
An urgent challenge
 
According to the EAT-Lancet Commission’s authors, “Providing healthy diets from sustainable food systems is an urgent and pressing challenge”. As the global population continues to grow - projected to reach 10bn by 2050 - and become wealthier, there is expected to be a concomitant increase in unhealthy diets comprised of red meat, processed food and sugar. To address this vast and escalating challenge, populations will need to combine significant dietary changes with enhanced food production and reduced food waste.
 
The impact of food waste
 
Before broaching some of the challenges associated with changing the way we eat collectively let us briefly describe the magnitude and effect of food wastage. According to the United Nation’s (UN) 1.3bn tonnes of food are wasted every year, which is about 33% of the total produced. The cost of global food losses and waste amounts to roughly US$990bn and yet some 800m people worldwide do not get enough to eat and 2bn people are overweight.
 
Further, food wastage is estimated to release the equivalent of 3.3bn tonnes of CO2 into the atmosphere each year. The total volume of water used annually to produce food that is lost or wasted (250km³) is equivalent to three times the volume of Lake Geneva. Similarly, 1.4bn hectares of land - 28% of the world's agricultural area - is used to produce food that is lost or wasted. And agriculture is responsible for a majority of threats to at-risk plant and animal species tracked by the International Union for Conservation of Nature. 
 
Changing what we eat and how we produce food will save lives and the planet
 
According to Alan Dangour, Professor in Food and Nutrition for Global Health at the London School of Hygiene & Tropical Medicine (LSHTM), “The EAT-Lancet Commission’s analysis demonstrates that shifts in our diets can have enormous beneficial effects on health and also substantially reduce our impacts on the environment.  This significant ‘win-win’ for health and the environment is not a new finding, but this analysis, which for the first time defines environmental boundaries for the food system, is the most advanced ever conducted”.
 
In a similar vein, Tara Garnett, a contributor to the EAT-Lancet Commission and a principal investigator of another research project on the future of food, also suggests that there’s nothing new in the Commission’s report but its fundamental message is that, “We’re not going to address our environmental problems unless we address the problems caused by the food system and we’re not going to address the problems caused by the food system unless we shift the way we eat collectively and globally”.

 
Rebalancing unhealthy diets is a significant challenge
 
Changing how we eat collectively, which Garnett and others suggest is necessary to reduce NCDs and enhance our environment, is not going to be easy. This is because it would involve cutting by half our consumption of red meat, processed food and sugar, and doubling our consumption of vegetables, fruit, pulses and nuts. For people living in the US and UK it would be even more challenging because the EAT-Lancet Commission ranks the US 43rd and the UK 23rd for their respective unhealthy diets out of the 195 nations in its study. It is suggested that in order to adopt a healthy diet Americans would need to eat 84% less red meat and six times more beans and lentils, and British people would have to eat 77% less red meat and 15 times more nuts and seeds.

Countries with the lowest rates of diet-related deaths are Israel, France, Spain and Japan. The highest rates are reported to be found in Uzbekistan, Afghanistan and the Marshall Islands. According to the Commission’s authors a Mediterranean-type-diet, “is what we should all be eating if we are concerned about our health and that of the planet”: it lowers the incidences of heart disease, diabetes and cancer, enables more environmentally helpful use of land and reduces carbon emissions.

 
The Mediterranean diet
 
The Mediterranean diet has been around for millennia and tends to be more of a lifestyle than a diet. It entails significantly lower amounts of beef, dairy products, sugar, soft drinks, pastries and processed foods; higher amounts of fish, fruit, nuts and salads, and no pasta, French fries and pastries. Unlike fashionable commercial diets associated with the weight management market, the Mediterranean diet does not have a set of specific rules that focus on losing weight, but instead emphasises eating fresh food over a lifetime. Also, the Mediterranean diet has been well studied. Research suggests that it is associated with a reduced risk of heart disease and cardiovascular mortality because of its significantly lower amounts of oxidized low-density lipoprotein (LDL) cholesterol, (the "bad" cholesterol) which is more likely to build up deposits in your arteries. Other benefits include reduced incidence of cancer, Parkinson's and Alzheimer's diseases. Further, women who follow a Mediterranean diet have a reduced risk of breast cancer.
 
The PREDIMED study
 
Findings of a landmark clinical trial, entitled “Primary Prevention of Cardiovascular Disease with a Mediterranean Diet”, was published in the June 2013 edition of the New England Journal of Medicine (NEJM). Popularly known as the PREDIMED study (Prevencion con Dieta Mediterranea), it tested the impact of two Mediterranean diets on cardiovascular risk. The first included a Mediterranean diet plus 30 grams of mixed nuts per day and the second was a Mediterranean diet plus at least four tablespoons a day of extra-virgin olive oil. The two diets were then compared to a low-fat diet, which is popularly advocated and pursued in the US and UK and among other developed nations and discourages the consumption of any high-fat items such as butter, cheese, oil, meats and pastries.
 
The low-fat diet
 
In the 1960s low-fat diets as opposed to high-fat, high-cholesterol diets were considered to promote heart health. By the late 1980s and early 1990s the low-fat diet was advocated by doctors, policy makers, the food industry and the media although there was no hard evidence to demonstrate it prevented heart disease and promoted weight loss. Notwithstanding, the low-fat-diet became an important part of the large and rapidly growing global weight management market, which is valued at some US$169bn and projected to grow at a CAGR of 2.4% and reach a value US$279bn by 2023. Interestingly, in the 80s and 90s, as the low-fat diet became an institution in the US and UK so the prevalence of overweight and obesity increased. Only recently has the low-fat diet been challenged as scientific evidence about fats increased.
 
A significant study with some methodological challenges
 
The PREDIMED study involved 7,447 people between 55 and 80 who were free from heart disease, came from 11 study centres across Spain and were randomly assigned to one of the three diets for five years. Findings suggested that the Mediterranean diet significantly reduced the risk of heart attack, stroke and cardio-vascular mortality compared to the low-fat diet. However, researchers discovered flaws with the study’s methodology and withdraw their findings. Most significantly, not all participants were randomly assigned to their diet and this could have influenced their findings.
 
Revised study of the Mediterranean diet
 
Researchers adjusted their methodology for its "irregularities in the randomization procedures" and published “new” findings in the June 2018 edition of the New England Journal of Medicine (NEJM), which confirmed the health benefits of a Mediterranean diet for adults at high risk for heart disease and found that the Mediterranean diet, plus olive oil or nuts, reduced risk for heart events by 30% compared to a low-fat diet. Lead author Miguel Ángel Martínez-González suggested that only about 10% of participants were affected in their earlier study reported in 2013, and their 2018 analysis made researchers, "More convinced than ever of the robustness of the protection by the Mediterranean diet against cardiovascular disease”. According to Jeffrey Drazen, editor-in-chief of the NEJM, "Medical professionals and their patients can use the republished information with confidence". While reaction to the study’s initial findings was disappointing, experts are encouraged by the adjusted findings, which confirm the heart-health benefits of a Mediterranean diet, particularly in adults at high risk for heart disease. Notwithstanding, experts emphasise the significance of sustaining a healthy diet over time.
  
The health benefits of the Japanese diet
 
The Mediterranean diet is not the only diet, which has proven to have significant health benefits. The Japanese diet, which is low in calories and saturated fat and high in nutrients, especially phytonutrients such as antioxidants and flavonoids, found in different coloured vegetables, also has considerable health benefits. Findings of two studies; one published in the April 2017 edition of PLOS.ONE, and another published in the March 2016 edition of the British Medical Journal demonstrate that, closer adherence to a Japanese diet resulted in a significantly lower risk of death from NCDs and in particular from cardiovascular disease or stroke. Japan has the highest life expectancy of any country: 90 years for women and 84 for men. Okinawa, in southernmost Japan, has the highest number of centenarians in the world as well as the lowest risk of age-related diseases such as cancer and heart disease. There are nearly 800 centenarians in Okinawa, which has a population of 1,368,000. The diet of the Okinawan people has been little influenced by the dietary changes influenced by western culture, which also have been seen in more urban Japan.
 
Takeaways
 
All the research findings we describe in this Commentary confirm the adage that, “You are what you eat”. Nutrients from the food you eat provide support for all the cells in your body, which have different “shelf lives”. For example, your skin cells live for about a month and your red blood cells for about four months. So, your body is constantly regenerating new cells to replace those that have “expired”. The health of your new cells is partly determined by how well you have been eating. A diet high on processed red meat and low on nutrients does not help in this regeneration process. But a nutrient rich, whole food diet can help to build your cells so that they work better to help you recover from common illnesses and the wear-and-tear of everyday life and make you less susceptible to disease.
 
Although our concern about healthy eating has intensified in recent years, the phrase, “you are what you eat” is not new. In 1826 Anthelme Brillat-Savarin wrote in Physiologie du Gout, ou Meditations de Gastronomie Transcendante, "Dis-moi ce que tu manges, je te dirai ce que tu es[Tell me what you eat, and I will tell you what you are]. However, the phrase did not emerge in English until the 1920s when nutritionist Victor Lindlahr, who believed that food controls health, developed the Catabolic Diet. According to Lindlahr, "Ninety per cent of the diseases known to man are caused by cheap foodstuffs. You are what you eat". And in 1942, he published a book entitled, “You Are What You Eat: how to win and keep health with diet”. Eat like the Greeks, live healthier lives and save our planet.
view in full page

What is HIV?


HIV (the human immunodeficiency virus) is a serious viral infection that is spread through body fluids, including through sexual intercourse, and this includes vaginal, anal and sometimes oral sex. HIV can also be spread by needle stick contamination, by sharing needles, receiving surgical treatment in foreign countries (where sterilization of equipment may not meet the standards of developed countries) and sometimes it can be passed from the mother to a child during the birth process or through breast feeding.

HIV is found in the bodily fluids of an infected person which includes semen, vaginal and anal fluids, blood and breast milk. HIV cannot be transmitted through sweat or urine. It thrives inside a persons body, however does not survive long outside the body.

What are the symptoms of HIV?


Not everyone that is infected by HIV will show signs or symptoms of the infection. At first individuals may experience flu-like symptoms, these can include:

  • diarrhoea
  • headaches
  • fatigue
  • sore throat
  • muscle aches and pains

If these symptoms do occur they can subside for a number of years and the HIV can go undetected in the body, but during this time the virus will multiply and can be passed on to other people.

 

What's the big deal with HIV?


If left alone and not managed or treated with antiviral tablets, the infection can lead on to a condition called AIDS (acquired immunodeficiency syndrome), where the immune system becomes weakened and this could eventually lead to life threatening infections and even cancers.

AIDS is the last and final stage of the HIV infection; this is when your body can no longer fight the infection.

However, if caught early through testing, with the correct antiviral medication, most people with HIV will not go on to develop AIDS.

Around 20% of people living in the UK with HIV are thought to be undiagnosed and are unaware that they are carrying the infection. This increases the risk to their partners and themselves of developing serious ill-health problems.

If you have have had sex with someone who may be HIV positive you can reduce your chances of infection by starting a PEP (post-exposure prophylaxis) treatment within 72 hours of exposure to the virus. You will need to attend your local A&E department for this treatment.

HIV home testing


A discreet Test kit is provided simply at home & sample then forwarded to the laboratory using our self addressed envelope.

If you think you have been exposed to the risk of HIV then you should get tested immediately.

TESTD™ offers the latest in HIV testing technology. If you are generally concerned for your health and would like total peace of mind we offer a next day 5th Generation HIV Duo test. This is the most advanced method of testing for HIV and can be done from day 28 onwards following a potential exposure.

The 5th generation HIV Duo test looks for both antibodies and the p24 antigen for HIV and is incredibly accurate (over 99.9% sensitivity).

Please note that it is possible to test for HIV from day 10 after a potential exposure by taking an early detection screen, however it should always be followed up with a 28 day HIV Duo test.

view in full page
Directory:
Tags:

The hayfever injection – help for severe sufferers

Severe hayfever symptoms can ruin peoples’ summers and have a detrimental effect on quality of life and ability to work optimally.

Certain parts of the UK are particularly affected by pollens and allergens likely to give severe symptoms, with the most likely culprits being a mixture of flower and tree pollen such as silver birch and rape seed.

If you have severe symptoms that fail to respond to other treatments, such as oral antihistamine medications, topical eye drops and so on, it is possible to request an appointment to discuss the hayfever injection at our clinics in Nottingham, Derby, Leicester, Sheffield, Leeds and Watford.

The hayfever injection is a corticosteroid injection which has anti-inflammatory properties. It suppresses the immune system and stops the natural pollen response from going ‘haywire’. This is the same medication given by doctors regularly for tennis elbow, various ligament and muscular strains, osteoarthritis and other joint conditions.

As with all injected medications, and in line with good medical practice, the doctor will undertake a careful risk assessment to make sure that you are a good candidate for treatment, and will explain the potential side effects and likely benefits in detail.

In our twenty-year experience of administering the hayfever injection, we have seen virtually nothing in the way of even mild ‘side effects’ with two people reporting a dimpling of the skin at the site of the injection (the buttock).

This dimpling is uncommon, however patients are always advised that it may occur and like all administered medications, the risks of any treatment must be balanced against the potential benefit of the treatment given.

 

view in full page