-
Immunotherapy drugs heralded as game changing cancer treatment
-
MD Anderson Professor Allison stripped cancer’s ability to evade attack
-
Nivolumab focuses on the environment around a cancer
-
Immunotherapy drugs are too expensive as sustainable treatments
-
The future is personalized medicine says cancer expert Karol Sikora
A new drug class that neither directly treats nor kills cancer is heralded as a game changer in cancer treatment.
New hope for late stage cancer patients
In March 2015, the American Food and Drug Administration (FDA) awarded an expanded approval for Opdivo (nivolumab), to treat non-small-cell lung cancer, which is the most common type of lung cancer, and means lung cancer patients who have failed other therapies and have no other treatment options, have another shot at containing their tumors. In June 2015, the European Commission approved the same Bristol-Myers Squibb drug in a fast track assessment for previously treated advanced melanoma patients. Accelerated assessment was given in Europe because Opdivo (nivolumab) qualified as a “Medicinal product of major interest from the point of view of public health, and in particular from the viewpoint of therapeutic innovation.” FDA and EU approvals of the drug Opdivo, opens the door for other, next-generation immunotherapies to treat advanced cancers. These are heralded as a new class of game changing drugs. But are they?
The genesis
Because cancer is a result of your body’s own cells growing abnormally, your immune system is held back from recognising cancer as foreign and potentially harmful. This is important because without such checks your immune system would kill you. Professor James Allison, director of MD Anderson’s immunotherapy platform, which cultivates, supports and tests new developments of immunology-based drugs and combinations, is credited with ground-breaking research that stripped away cancer’s ability to evade attack by the immune system. Allison’s discoveries led to nivolumab to improve the survival rate of patients with metastatic melanoma, and his insights into the basic biology of immune system T cells is broadly applicable to a variety of cancers.
How it works
These new drugs release the body’s own weapons: killer white blood cells called T cells, and have been likened to taking the brakes off the immune system so that it is able to recognise tumors it wasn't previously recognising, and react to destroy them. Unlike traditional cancer therapies such as surgery, chemotherapy, radiation or the anti-cancer drugs, immunotherapy does not target the tumor itself. Instead, it focuses on the environment around the cancer, and releases a check on the immune system’s appetite for anything that it does not recognize, so the body’s own defences can recognize tumor cells as targets. Allison says, “This drug doesn’t treat cancer; it doesn’t kill cancer cells so you can’t inject it and expect cancer to melt away immediately because it won’t.” However, when nivolumab is combined with tumor-targeted treatments, it lowers the risk of recurrent cancers. It does this by training the body’s T cells to recognize specific features of tumors, just as they do for viruses and bacteria. Thus, the immune system itself is programmed to destroy any returning or remaining cancer.
Too costly
Although immunotherapies are generating excitement among cancer clinicians and researchers, clinical studies on melanoma patients show relatively modest prolongations of life, compared with historical norms, at significant costs. For example, the cost of Opdivo (nivolumab) for one patient is about £100,000 per year. Speaking at the 2015 American Society of Clinical Oncology (ASCO) conference in Chicago, Dr Leonard Saltz from Memorial Sloan Kettering Cancer Center, New York City, suggested that new immunotherapies would cost more than US$1 million per patient per year at the higher dose currently being studied in many different cancer types, and warned, "This is unsustainable.... We must acknowledge that there must be some upper limit to how much we can, as a society, afford to pay to treat each patient with cancer . . As someone who worries about making cancer care available to everyone and minimizing disparities, I have a major problem with this: these drugs cost too much."
Takeaway
According to cancer expert Professor Karol Sikora the future of cancer treatment is personalized medicine rather than new immunotherapy products. Personalized cancer care takes into account the individual’s disease, and their personal circumstances. According to Sikora, “The extent to which treatment can be tailored to an individual has been limited by crude descriptions of their disease, and generic treatment options. Advances in genomics and drug responsiveness are leading to more detailed descriptions of a patient’s cancer and better-targeted treatments, which offer significant advantages over blunderbuss chemotherapies. Personalised medicine is the real future for all our patients. Forget the drug hype; this is where the real hope lies”. Here Mike Birrer, Professor of Medicine at the Harvard University Medical School, and Director of the Cancer Center at Massachusetts General Hospital describes personalised medicine:
|
Comments