Finding the Holy Grail: early detection tests for cancer
- Bioengineers throughout the world are competing to achieve the Holy Grail: an affordable, point-of-care blood test - liquid biopsy - that detects cancer before any symptoms present
- Success in achieving this will save millions of lives, substantially reduce healthcare costs and make investors, researchers and organisations billions
- Despite significant advances no one has yet achieved the Holy Grail and there remains a substantial gap between researchers’ aspirations and reality
- How close are we?
Finding the Holy Grail: early detection tests for cancer
“It’s too soon to even claim that the research is promising," commented Paul Pharoah, a professor at Cambridge University’s Centre for Cancer Genetic Epidemiology, on the research findings of Daniyah Alfattani, a PhD student in the Centre of Excellence for Autoimmunity in Cancer (CEAC) at Nottingham University’s School of Medicine in the UK.
Alfattani was presenting research findings of a small study at the National Cancer Research Institute’s (NCRI) conference in Glasgow, Scotland, in November 2019, which is an international forum for showcasing cancer advances.
A September 2019 HealthPad Commentary described another early detection test for breast cancer called CanRisk, which has been developed by researchers from Cambridge University’s Centre for Cancer Genetic Epidemiology and has the potential to identify women with different levels of risk of breast cancer.
Alfattani and bioengineers from the universities of Nottingham and Cambridge are players in a vast and rapidly evolving international army of researchers engaged in an intensely competitive global race to develop an affordable, point-of-care, early detection test (EDT) for cancer based upon a liquid biopsy and next generation sequencing technologies. The Holy Grail is for such a test to detect cancer cells in an asymptomatic patient, locate the tissue of origin and give that person an early diagnosis when treatment is more likely to be successful; and to do all this with 100% accuracy.
Although Alfattani’s research study is modest, her findings are potentially clinically relevant because they are on the Holy Grail therapeutic pathway, and her preliminary findings suggest that a simple, cheap and easy-to-use blood test - liquid biopsy - could detect breast cancer five years before any symptoms present. If demonstrated to be exquisitely accurate, safe and efficient by a larger study, which already is underway at Nottingham University’s CEAC, Alfattani’s research could be a key to saving thousands of lives and substantial amounts of money.
Alfattani was presenting research findings of a small study at the National Cancer Research Institute’s (NCRI) conference in Glasgow, Scotland, in November 2019, which is an international forum for showcasing cancer advances.
A September 2019 HealthPad Commentary described another early detection test for breast cancer called CanRisk, which has been developed by researchers from Cambridge University’s Centre for Cancer Genetic Epidemiology and has the potential to identify women with different levels of risk of breast cancer.
Alfattani and bioengineers from the universities of Nottingham and Cambridge are players in a vast and rapidly evolving international army of researchers engaged in an intensely competitive global race to develop an affordable, point-of-care, early detection test (EDT) for cancer based upon a liquid biopsy and next generation sequencing technologies. The Holy Grail is for such a test to detect cancer cells in an asymptomatic patient, locate the tissue of origin and give that person an early diagnosis when treatment is more likely to be successful; and to do all this with 100% accuracy.
Although Alfattani’s research study is modest, her findings are potentially clinically relevant because they are on the Holy Grail therapeutic pathway, and her preliminary findings suggest that a simple, cheap and easy-to-use blood test - liquid biopsy - could detect breast cancer five years before any symptoms present. If demonstrated to be exquisitely accurate, safe and efficient by a larger study, which already is underway at Nottingham University’s CEAC, Alfattani’s research could be a key to saving thousands of lives and substantial amounts of money.
Gold standard breast cancer screening
Currently, mammography screening is the gold standard for preventing and controlling breast cancer, which is costly to administer and only has a sensitivity between 72% and 87%. For every death from breast cancer that is prevented by mammography screening, it is estimated there are three false-positive cases detected and treated unnecessarily. Further, nearly half of all cancer sufferers are diagnosed late, when their tumours have already metastasized. It is estimated that 30% to 40% of cancer deaths could be prevented by early detection and treatment.
In this Commentary
This Commentary provides a partial update of some bioengineering initiatives described in a 2016 HealthPad Commentary, to speed up and improve liquid biopsies, which can simultaneously detect cancer early and identify its tissue of origin. Although there have been significant developments, the challenge for liquid biopsy assays still remains the level of their positive predictive values. This Commentary provides a brief and partial epidemiology of breast cancer, describes Alfattani’s research and its findings and briefly mentions some similar research that is underway. We describe categories of biomarkers employed by researchers and indicate some advances in EDTs made by some giant biopharma companies as well as briefly describing another innovative university-based development. We conclude by suggesting that: (i) despite significant and well supported research endeavours over the past decade to develop EDTs, there still remains a gap between scientific aspirations and reality; and (ii) there appears to be a gap opening between commercially available personalised cancer therapies, which are by-products of EDT research and standard oncological therapies.
Partial epidemiology of breast cancer
Despite significant advances in the awareness, diagnosis and treatment of breast cancer, it still remains the most common cancer in women worldwide, contributing 25.4% of the total number of new cases of cancer diagnosed in 2018. Each year, more than 0.5m women throughout the world die from the condition. In the US each year, over 268,000 new cases of invasive breast cancer are diagnosed in women, and over 41,000 women die from breast cancer. Between 1989 and 2016, death rates from female breast cancer in the US dropped by 40%. Over the past decade, death rates from breast cancer in older women in the US continued to decrease but remained steady in women under 50. Such decreases are attributed to increased awareness of the condition, earlier detection through screening and improved treatments. In the UK, there are over 55,000 new breast cancer cases diagnosed each year. In contrast to the US, since the early 1990s, breast cancer incidence rates in the UK have increased by around 19%, but death rates have fallen because of greater awareness, earlier detection and enhanced therapies. Notwithstanding, each year more than 11,000 women in the UK die from breast cancer. Furthermore, each year in the US, there are over 1.7m new diagnoses of all cancers, while in the UK there are over 360,000 new cases. Although recent advances in EDTs have the potential to decrease cancer deaths, as yet there is not a simple and cheap liquid biopsy, which can be used routinely in clinics to diagnose a range of cancers early. .
Alfattani’s research
The research pursued by Alfattani and her Nottingham colleagues is predicated upon the fact that cancer cells produce proteins called antigens, which trigger the body to make antibodies against them. These are called “autoantibodies”. Researchers discovered that these tumour-associated antigens (TAAs) are good indicators (biomarkers) of cancer. Alfattani and her colleagues developed panels of TAAs, which are known to be linked with breast cancer as a technique to detect whether or not there are autoantibodies against them in blood samples taken from patients.
The Nottingham researchers took blood samples from 90 breast cancer patients at the time they were diagnosed with the disease and matched them with samples taken from 90 patients without breast cancer (the control group). Researchers employed technology (protein microarray), which allowed them to screen the blood samples for the presence of autoantibodies against 40 TAAs associated with breast cancer and also 27 TAAs not known to be linked with the disease. The accuracy of the test improved in the panels that contained more TAAs.
The Nottingham researchers took blood samples from 90 breast cancer patients at the time they were diagnosed with the disease and matched them with samples taken from 90 patients without breast cancer (the control group). Researchers employed technology (protein microarray), which allowed them to screen the blood samples for the presence of autoantibodies against 40 TAAs associated with breast cancer and also 27 TAAs not known to be linked with the disease. The accuracy of the test improved in the panels that contained more TAAs.
Findings
A panel of five TAAs correctly detected breast cancer in 29% of the samples from the cancer patients and correctly identified 84% of the control group as being cancer-free. A panel of seven TAAs was able to detect disease in 35% of cases with breast cancer and rule out 79% of patients in the control group. The most successful technique was a panel of nine antigens, which correctly identified the disease in 37% of cancer samples and no cancer in 79% of the controls. “The results of our study showed that breast cancer does induce autoantibodies against panels of specific tumour-associated antigens. . . . . The results are encouraging and indicate that it is possible to detect a signal for early breast cancer. Once we have improved the accuracy of the test, then it opens the possibility of using a simple blood test to improve early detection of the disease”, said Alfattani.
David Crosby, head of early detection at the Cancer Research UK charity, said, “Diagnosing cancer at the earliest stages before it grows or spreads gives patients the best chance that their treatment will be successful. So, the potential to detect markers in the blood before other signs appear is promising”.
|
|
|
|
Comments