Tag

Tagged: biosensors

Sponsored
 
 
  • The convergence of MedTech and pharma can generate innovative combination devices that promise significant therapeutic and commercial benefits
  • Combination devices such as advanced drug delivery systems offer more precise, predictable and personalized healthcare
  • The global market for advanced drug delivery systems is US$196bn and growing
  • Biosensors play a role in convergence and innovative drug delivery systems
  • Roger Kornberg, Professor of Medicine at Stanford University and 2006 Nobel Prize winner for Chemistry describes the technological advances, which are shaping new medical therapies

    

The convergence of MedTech and pharma and the role of biosensors

MedTech and pharma companies are converging.
What role do biosensors play in such a convergence?
 
Traditionally, MedTech and big pharma have progressed along parallel paths. More recently, however, their paths have begun to converge in an attempt to gain a competitive edge in a radically changing healthcare landscape. Convergence leverages MedTech’s technical expertise and pharma’s medical and biological agents to develop combination devices. These are expected to significantly improve diagnosis, monitoring and treatment of 21st century chronic lifetime diseases, and thereby make a substantial contribution to an evolving healthcare ecosystem that demands enhanced patient outcomes, and effective cost-containment.
 

Conventional diagnostics & drug delivery

Conventional in vitro diagnostics for common diseases are costly, time-consuming, and require centralized laboratories, experienced personnel and bulky equipment. Standard processes include the collection and transportation of biological samples from the point of care to a centralized laboratory for processing by experienced personnel. After the results become available, which usually takes days, the laboratory notifies doctors, who in turn contact patients, and modify their treatments as required. Conventional modes of treatment have mainly consisted of simple, fast-acting pharmaceuticals dispensed orally or as injectables. Such limited means of drug delivery slows the progress of drug development since most drugs are formulated to accommodate the conventional oral or injection delivery routes. Concerns about the quantity and duration of a drug’s presence, and its potential toxic effect on proximal non-diseased tissue drives interest in alternative drug delivery systems and fuels the convergence of MedTech and pharma.



The end of in vitro diagnostics

Roger Kornberg, Professor of Medicine at Stanford University, reflects on the limitations of conventional in vitro diagnostics, and describes how technological advances facilitate rapid point-of-care diagnostics, which are easier and cheaper:

 
 
Converging interest
 
Illustrative of the MedTech-pharma convergence is Verily's (formerly Google Life Sciences) partnership with Novartis to develop smart contact lenses to correct presbyopia, (age-related farsightedness), and for monitoring diabetes by measuring glucose in tears. Otsuka’s, partnership with Proteus Digital Health is another example. This venture expects to develop an ingestible drug adherence device. Proteus already has a FDA-approved sensor, which measures medication adherence. Otsuka is embedding the Proteus’s sensor, which is the size of a sand particle, into its medication for severe mental illnesses in order to enhance drug adherence, which is a serious problem. 50% of prescribed medication in the US is not taken as directed, resulting in unnecessary escalation of conditions and therapies, higher costs to health systems, and a serious challenge for clinical studies.

Drivers of change

The principal drivers of MedTech-pharma convergence include scientific and technological advances, ageing populations, increased chronic lifestyle diseases, emerging-market expansion, and developments in therapies. All have played a role in changing healthcare demands and delivery landscapes. Responding to these changes, both MedTech and pharma have continued to emphasize growth, while attempting to enhance value for payers and patients. This has resulted in cost cutting, and a sharper focus on high-performing therapeutics. It has also fuelled MedTech-pharma convergence and the consequent development of combination devices. According to Deloitte’s 2016 Global Life Science Outlook, combination devices “will likely continue to rapidly increase in number and application”.

MedTech’s changing business model
 
Over the past two decades, MedTech has been challenged by tighter regulatory scrutiny, and continued pressure on healthcare budgets, but advantaged by technological progress, which it has embraced to create new business models. This has been rewarded by positive healthcare investment trends. Over a similar period, pharma has been challenged by the expiry of its patents, advances in molecular science, and changing demographics, but buoyed by increased healthcare spending trends, although the forces that increase health costs are being tempered by a demand for value.

As pharma has been increasingly challenged, so interest has increased in the potential of MedTech to address some of the more pressing healthcare demands in a radically changing healthcare ecosystem. Unlike pharma, MedTech has leveraged social, mobile, and cloud technologies to develop new business models and innovative devices for earlier diagnoses, faster and less invasive interventions, enhanced patient monitoring, and improved management of lifetime chronic conditions.
 
Such innovations are contributing to cheaper, faster, and more efficient patient care, and shifting MedTech’s strategic focus away from curative care, such as joint replacements, to improving the quality of life for patients with chronic long-term conditions. This re-focusing of its strategy has strengthened MedTech commercially, and is rapidly changing the way in which healthcare is delivered, the way health professionals treat patients, and the way patients’ experience healthcare.
 
Josh Shachar, founder of several successful US technology companies and author of a number of patents, describes the new healthcare ecosystem and some of the commercial opportunities it offers, which are predicated on the convergence of MedTech and pharma:
 
 
The decline of big pharma’s traditional business model
 
Pharma’s one-size-fits-all traditional business model, which has fuelled its commercial success over the past century, is based on broad population averages. This now is in decline as patents expire on major drugs, and product pipelines diminish. For example, over the past 30 years the expiry of pharma’s patents cost the industry some US$240bn.

Advances in genetics and molecular biology, which followed the complete sequencing of the human genome in 2003, revolutionized medicine and shifted its focus from inefficient one-size-fits-all drugs to personalized therapies that matched patients to drugs via diagnostic tests and biomarkers in order to improve outcomes, and reduce side effects. Already 40% of drugs in development are personalized medicines, and this is projected to increase to nearly 70% over the next five years.

Today, analysts transform individuals’ DNA information into practical data, which drives drug discovery and diagnostics, and tailors medicines to treat individual diseases. This personalized medicine aims to target the right therapy to the right patient at the right time, in order to improve outcomes and reduce costs, and is transforming how healthcare is delivered and diseases managed. 

 
Personalized medicine

Personalized medicine has significantly dented pharma’s one-size-fits-all strategies. In general, pharma has been slow to respond to external shocks, and slow to renew its internal processes of discovery and development. As a result, the majority of new pharma drugs only offer marginal benefits. Today, pharma finds itself trapped in a downward commercial spiral: its revenues have plummeted, it has shed thousands of jobs, it has a dearth of one-size-fits-all drugs, and its replacement drugs are difficult-to-find, and when they are, they are too expensive.

Illustrative of the advances in molecular science that helped to destroy pharma’s traditional commercial strategy is the work of Kornberg. Here he describes an aspect of his work that is related to how biological information encoded in the genome is accessed to inform the direction of all human activity and the construction of organisms for which Kornberg received the Nobel Prize in Chemistry 2006, and created the foundations of personalized medicine:

 

  
Advanced drug delivery systems
 
Over the past 20 years, as pharma has struggled commercially and MedTech has shifted its business model, drug delivery systems have advanced significantly. Evolving sensor technologies have played a role in facilitating some of these advances, and are positioned to play an increasingly important role in the future of advanced drug delivery. According to BCC Research, the global market for advanced drug delivery systems, which increase bioavailability, reduce side effects, and improve patient compliance, increased from US$134bn in 2008 to some US$196bn in 2014.
 
The growth drivers for innovative drug delivery systems include recent advances of biological drugs such as proteins and nucleic acids, which have broadened the scope of therapeutic targets for a number of diseases. There are however, challenges.

 

Proteins are important structural and functional biomolecules that are a major part of every cell in your body. There are two nucleic acids: DNA and RNA. DNA stores and transfers genetic information, while RNA delivers information from DNA to protein-builders in the cells.


For instance, RNA is inherently unstable, and potentially immunogenic, and therefore requires innovative, targeted delivery systems. Such systems have benefitted significantly from progress in biomedical engineering and sensor technologies, which have enhanced the value of discoveries of bioactive molecules and gene therapies, and contributed to a number of new, advanced and innovative combination drug delivery systems, which promise to be more efficacious than conventional ones. 
 
Biosensors
 
The use of biosensors in drug delivery system is not new. The insulin pump is one example. Introduced in its present form some 30 years ago, the insulin pump is a near-physiologic programmable method of insulin delivery that is flexible and lifestyle-friendly.

Biosensors are analytical tools, which convert biological responses into electrical signals. In healthcare, they provide analyses of chemical or physiological processes and transmit that physiologic data to an observer or to a monitoring device. Historically, data outputs generated from these devices were either analog in nature or aggregated in a fashion that was not conducive to secondary analysis. The latest biosensors are wearable and provide vital sign monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in remote regions. 
 
Increased accuracy and speed
 
The success of biosensors is associated with their ability to achieve very high levels of precision in measuring disease specific biomarkers both in vitro and in vivo environments. They use a biological element, such as enzymes, antibodies, receptors, tissues and microorganisms capable of recognizing or signalling real time biochemical changes in different inflammatory diseases and tumors. A transducer is then used to convert the biochemical signal into a quantifiable signal that can be transmitted, detected and analysed, and thereby has the potential, among other things, for rapid, accurate diagnosis and disease management.
 
Recent technological advances have led to the development of biosensors capable of detecting the target molecule in very low quantities and are considered to have enhanced capacity for increased accuracy and speed of diagnosis, prognosis and disease management. Biosensors are robust, inexpensive, easy to use, and more importantly, they do not require any sample preparation since they are able to detect almost any biomarker  - protein, nucleic acid, small molecule, etc. - within a pool of other bimolecular substances. Recently, researchers have developed various innovative strategies to miniaturize biosensors so that they can be used as an active integral part of tissue engineering systems and implanted in vivo.

 
Market for biosensors
 
Over the past decade, the market in biosensors and bioinformatics has grown; driven by advances in artificial intelligence (AI), increased computer power, enhanced network connectivity, miniaturization, and large data storage capacity.

Today, biosensors represent a rapidly expanding field estimated to be growing at 60% per year, albeit from a low start. In addition to providing a critical analytical component for new drug delivery systems, biosensors are used for environmental and food analysis, and production monitoring. The estimated annual world analytical market is about US$12bn, of which 30% is in healthcare. There is a vast market expansion potential for biosensors because less than 0.1% of the analytical market is currently using them.

A significant impetus of this growth comes from the healthcare industry, where there is increasing demand for inexpensive and reliable sensors across many aspects of both primary and secondary healthcare. It is reasonable to assume that a major biosensor market will be where an immediate assay is required, and in the near-term patients will use biosensors to monitor and manage treatable lifetime conditions, such as diabetes cancer, and heart disease.

The integration of biosensors with drug delivery
 
The integration of biosensors with drug delivery systems supports improved disease management, and better patient compliance since all information in respect to a person’s medical condition may be monitored and maintained continuously. It also increases the potential for implantable pharmacies, which can operate as closed loop systems that facilitate continuous diagnosis, treatment and prognosis without vast data processing and specialist intervention. A number of diseases require continuous monitoring for effective management. For example, frequent measurement of blood flow changes could improve the ability of health care providers to diagnose and treat patients with vascular conditions, such as those associated with diabetes and high blood pressure. Further, physicochemical changes in the body can indicate the progression of a disease before it manifests itself, and early detection of illness and its progression can increase the efficacy of therapeutics.
 
Takeaways

Combination devices, which are triggered by the convergence of MedTech and pharma, offer substantial therapeutic and commercial opportunities. There is significant potential for biosensors in this convergence. The importance of biosensors is associated with their operational simplicity, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated into different functions using the same chip. However, there remain non-trivial challenges to reconcile the demands of performance and yield to simplicity and affordability.
 
 
view in full page
 
  • Influenza, or flu, outbreaks are recurrent and every year pose  a significant risk to global health
  • Influenza affects millions: each year 3m to 5m cases of severe disease and 500,000 deaths
  • Pandemics occur about three times a century
  • The 1918 flu pandemic killed 21m . . . Total deaths in World War I was 17m
  • Effective treatment of patients with respiratory illness depend on accurate and timely diagnosis
  • Early diagnosis of influenza can reduce the inappropriate use of antibiotics and provide the option of using antiviral therapy
  • Rapid Influenza Diagnostic Tests (RIDTs) are useful in determining whether outbreaks of respiratory disease might be due to influenza
  • RIDTs vary in their sensitivity, specificity, complexity, and time to produce results
  • There is a pressing need for faster, cheaper, and easier-to-use flu tests with higher levels of sensitivity and specificity than those currently available
  • The large, fast-growing, global and under-served RIDT market drives a host of initiatives
  • Various development challenges pose significant threats
 
 
The critical importance of new rapid influenza diagnostic tests
 
What challenges face developers of cheap, easy-to-use, rapid and accurate diagnostic tests for influenza, or flu, which improve on tests currently available?

 
Influenza

Influenza is a highly contagious respiratory illness caused by a virus, and occurs in distinct outbreaks of varying extent every year. Its epidemiologic pattern reflects the changing nature of the antigenic properties of influenza viruses. The viruses subsequent spread depends upon multiple factors, including transmissibility and the susceptibility of the population. Influenza A viruses, in particular, have a remarkable ability to undergo periodic changes in the antigenic characteristics of their envelope glycoproteins; the hemagglutinin and the neuraminidase. Anyone can get influenza. It is usually spread by the coughs and sneezes of an infected person. You can also catch flu by touching an infected person (e.g. shaking hands). Adults are contagious one to two days before getting symptoms and up to seven days after becoming ill, which means that you can spread the influenza virus before you even know you are infected. Influenza presents as a sudden onset of high fever, myalgia, headache and severe malaise, cough (usually dry), sore throat, and runny nose. There are several treatment options, which aim to ease symptoms until the infection goes, and aims to prevent complications. Most healthy people recover within one to two weeks without requiring any medical treatment. However, influenza can cause severe illness or death especially in people at high risk such as the very young, the elderly, and people suffering from medical conditions such as lung diseases, diabetes, cancer, kidney or heart problems.
  
Costly killer

Influenza is a cruel, costly killer with a history of pandemics. It causes millions of upper respiratory tract infections every year as it spreads around the world in seasonal epidemics, and poses on-going risks to health. The most vulnerable are the young, the old and those with chronic medical conditions such as heart disease, respiratory problems and diabetes. Each year, on average 5% to 20% of populations in wealthy countries get influenza. In the US it causes more than 200,000 hospitalizations and 36,000 deaths annually, and each year costs the American economy between US$71 to US$167bn.
 
History of pandemics

The 1918-19 “Spanish Flu” pandemic caused 21m deaths, and was one of three 20th century influenza pandemics. At least four pandemics occurred in the 19th century, and the first pandemic of the 21st century was the 2009 “Swine Flu”. Its virulence and global human impact was less deadly than originally feared, but it still resulted in 18,449 laboratory confirmed deaths. If you account for people who died as a result of complications precipitated by the Swine Flu, the actual death toll is significantly higher. Mindful of the potential accelerated spread of a pandemic subtype of the influenza virus, the World Health Organization (WHO), and national governments continuously monitor influenza viruses. Assessment of pathogenicity and virulence is the key to taking appropriate healthcare actions in the event of an outbreak.

However, without widespread access to improved diagnostic tests, each year millions will not receive timely anti-viral medication, tens of thousands of influenza sufferers will develop complications, and thousands will die unnecessarily, as the growing interconnections and complexity of the world present an increasing challenge to influenza prevention and control.
 

The influenza viruses

Influenza is a single-stranded, helically shaped, RNA virus of the orthomyxovirus family. Influenza viruses are divided into two groups: A and B. Influenza A has two subtypes which are important for humans: A(H3N2) and A(H1N1). The former is currently associated with most deaths. Influenza viruses are defined by two different protein components, known as antigens, on the surface of the virus. They are haemagglutinin (H) and neuraminidase (N) components. Influenza viruses circulate in all parts of the world, and mutate at a low level, referred to as "genetic drift", which allows influenza to continuously evolve and escape from the pressures of population immunity. This means that each individual is always susceptible to infections with new strains of the virus. "Genetic shift" occurs when a strain of influenza A virus completely replaces one or more of its gene segments with the homologous segments from another influenza A strain, a process known as reassortment. If the new segments are from an animal influenza virus to which humans have had no exposure and no immunity, pandemics may ensue.
 
Gold standard diagnosis rarely used

The gold standard method for the detection of influenza viruses is rarely performed, as patients with suspected influenza are most likely to be seen by a primary care doctor with limited resources, and the gold standard test requires sophisticated laboratory infrastructure, and takes at least 48 hours. Even the faster Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test, which is a relatively new type of molecular assay that uses isothermal amplification of viral cells, has a turnaround time of four to six hours. It is also expensive, and therefore not commonly used.

The slowness and expense of traditional influenza tests led to the development of an array of commercially available Rapid Influenza Diagnostic Tests (RIDTs), which screen for influenza viruses, and provide results within as little as 15 minutes after sample collection and processing. Such tests are largely immunoassays that can identify the presence of influenza A and B viral nucleoprotein antigens in respiratory specimens and display the results in a qualitative way (positive or negative). About 10 such tests have FDA approval and are available in the US. About 20 have been determined suitable for the European market. All are growing in their usage. However, the RIDTs vary in their sensitivity, specificity, complexity, and in the time needed to produce results.
  
Tests rule in Influenza but do not rule it out
 
According to the Centers for Disease Control and Prevention (CDC) the commercially available RIDTs in America have a sensitivity ranging from 50% to 70%. This means that in up to 50% of influenza cases, test results will still be negative. A study showed that tests for the N1H1 virus, a subtype of influenza A that was the most common cause of the Swine Flu in 2009, and is associated with the 1918 Spanish Flu pandemic, have a sensitivity ranging from 32% to 50% depending on the brand of test. A 2012 meta-analysis of the accuracy of RIDTs reported an average sensitivity for detecting influenza in adults of only 54%. Sensitivity in children is somewhat higher since they tend to shed a greater quantity of virus. Thus some 30% to 50% of flu samples that would register positive by the gold standard viral culture test may give a false negative when using a RIDT, and some may indicate a false positive when a person is not infected with influenza. Thus, RIDTs that are currently available allow Influenza to be ruled in but not ruled out. More sensitive tests are needed.
 
New flu tests

There are a number of innovative nano-scale molecular diagnostic influenza tests in development, which are expected to deliver more accurate validations than existing antigen-based molecular tests. The new tests use a platform, comprised of an extremely thin layer of material, which detects the presence of influenza proteins in saliva or blood. This is attached to an electronic chip, which transforms the platform into a sensor. This is an essential part of the measuring device as it converts the input signal to the quantity suitable for measurement and interpretation. The presence of influenza proteins in saliva or blood triggers an electrical signal in the chip, which is then communicated to a mobile phone.
 
Here Roger Kornberg, Professor of Medicine at Stanford University and 2006 Nobel Laureate for Chemistry describes how advances in molecular science are enabling the replacement of traditional in vitro diagnostics with rapid, virtually instantaneous point-of-care diagnostics without resort to complex processes or elaborate infrastructure.  Antiviral drugs for influenza are available in some countries and may reduce severe complications and deaths. Ideally they need to be administered early (within 48 hours of onset of symptoms) in the disease.  An almost instantaneous point-of-care test will enable better access to appropriate treatment particularly in primary care:

 
 
Challenges

Notwithstanding all the recent scientific advances, new and innovative influenza detection tests will need to overcome significant challenges to outperform current RIDTs. In addition to the usual challenges associated with sensitivity and specificity, new developers have to be aware of recent changes in immunochromatographic antigen detection testing for influenza viruses, and the rapid development of commercially available nucleic acid amplification tests. Also, there are the usual development challenges associated with miniaturization, fabrication, scaling, marketing, and regulation. Effective from 13 February 2017, the FDA reclassified antigen based rapid influenza detection tests from class I into class II devices. Class II devices are higher risk than Class I, and require greater regulatory controls to provide reasonable assurance of the device’s safety and effectiveness. This was provoked by the potential for the devices to fail to detect newer versions of the influenza virus. For instance, a novel variant of influenza A,H7N9, has emerged in Asia, and H5N1 is also re-emergent.
 
Another challenge, especially for start-ups with limited resources, is the fluctuating nature of the influenza virus itself. A bad year for patients, when influenza causes millions of people to become ill, is a good year for manufacturers of RIDTs. Conversely, a good year for patients, when influenza affects a lower percentage of the population, is a bad year for manufacturers who suffer from unsold inventory, and reduced revenues. Thus, the vagaries of the flu virus not only have the potential to kill millions of people, they also pose a significant threat to start-ups dedicated to developing RIDTs.
 
Takeaways

Despite all the challenges, there is a significant commercial opportunity in the current under-served global RIDT market for improved tests. Each year, in the US, more than 1bn people visit primary care doctors, and in the UK, the NHS, deals with over 1m patients every 36 hours. The global in vitro diagnostics market was valued at US$60bn in 2016. Between 2016 and 2021, the market is expected to grow at a CAGR of 5.5% to reach US$79bn by 2021. Over the same period, the global point-of-care diagnostics sub-market is expected to grow at a CAGR of 10% to reach US$37bn by 2021. Large corporates, small start-ups, and university research laboratories have spotted the opportunity, and started developing new and innovative RIDTs. Given that each-year influenza causes widespread morbidity as well as mortality, it should be a matter of priority to support all efforts to develop swift and reliable RIDTs. A significant step forward would be a RIDT with greater sensitivity and usability such that the test could be administered and a result given within a 10-minute primary care consultation.
 
view in full page