Tag

Tagged: MedTech

Sponsored
  • MedTechs have experienced significant transformation through mergers and acquisition (M&A) to achieve steady growth, diverting resources from innovative research and development (R&D) initiatives
  • The industry’s M&A activities were fueled by a prolonged period of low interest rates and easy access to capital
  • Consequently, R&D efforts focussed on incremental improvements rather than breakthrough innovations
  • This financial-centric business model led to risk-averse bureaucracies among many MedTechs, resulting in a strategic deadlock with limited growth prospects
  • Adding to the challenges, the current era witness’s debt and asset prices surpassing productivity and economic output
  • For many MedTechs, these macro-economic conditions potentially pose funding constraints, reduced market demand, tightening regulatory challenges, cost pressures, and market volatility, further hindering their ability to overcome the deadlock
  • To address these issues and help MedTechs break free from their strategic deadlocks and create long-term value we propose seven strategic initiatives
 
The Financialization Dilemma of MedTechs
 
In the 1990s and 2000s, medical technology companies received praise for their rapid growth. However, they currently find themselves at a crucial juncture, facing challenges of low and stagnant growth rates. Additionally, an uncertain long-term outlook looms over them due to the expansion of global balance sheets surpassing GDP, as well as debt and asset prices outpacing productivity and economic output. This Commentary aims to shed light on how many MedTechs reached this strategic deadlock. It also proposes strategies that these companies can pursue to break free from this predicament, which have the potential to significantly enhance growth rates, improve balance sheet health, and foster value creation.
 
An era of low interest rates and cheap capital

The financialization of MedTechs has played a significant role in their current strategic deadlock, and the most viable solution lies in accelerating productivity. This financialization was facilitated by a prolonged period of low interest rates and easy access to inexpensive capital. Over the span of four decades, starting from the 1980s to the early 2020s, interest rates steadily declined across most industrialized nations. In the aftermath of the 2008-09 financial crisis, many countries adopted a low interest rate environment to stimulate economic recovery and restore liquidity in their banking systems. For example, the US Federal Reserve Board (Fed) lowered short-term interest rates from 4.25% in December 2007 to nearly zero by December 2008, registering the lowest rate in the Fed's history.
 
During the era of persistently low interest rates and readily available capital, MedTechs experienced a surge in merger and acquisition (M&A) activities, primarily targeting companies in near-adjacent sectors to capitalize on low-risk opportunities for incremental growth. This trend fostered a culture of consolidation, driven by the desire to access new technologies and broaden product portfolios. While M&A activities bolstered short-term profits and shareholder value, they often led to a neglect of research and development (R&D) initiatives. Acquisitions were perceived as a less risky and quicker avenues for expanding product lines, overshadowing investments in R&D. Consequently, many MedTechs adopted a risk-averse approach, channeling their R&D efforts towards incremental improvements of existing products rather than pursuing ground-breaking innovations that could significantly improve patient outcomes and disrupt the industry. Moreover, the increasingly stringent regulatory environment for medical devices, particularly in Europe, further discouraged companies from investing in R&D due to longer development timelines and escalated costs.
 
Over the years, these policies resulted in the consolidation of power and resources among a few large players, leading to the emergence of market oligopolies and the decline in industry diversity. This scenario posed challenges for smaller companies with innovative ideas, as they struggled to compete with established enterprises, thereby impeding both innovation and healthy competition. Moreover, established MedTechs benefited from the significant and rapidly growing healthcare demands in affluent Western markets, particularly North America and Europe, which account for ~65% of the global medical device market. In these markets, compensation was often tied to medical and surgical procedures rather than focussing on patient outcomes, further favouring the established industry players. While M&A can be an effective growth strategy, it is important for companies to strike a balance and prioritize innovation alongside their consolidation efforts to ensure sustainable success and drive meaningful advancements in the industry.
 
An era of surging prices and low productivity

We have now entered a distinct era that differs significantly from the previous era characterized by low interest rates, and easily accessible funds. Starting from March 2022, the Fed has implemented 10 consecutive rate hikes, bringing its benchmark rate to 5.25%. These increases, coupled with high leverage in the corporate sector, escalating geopolitical tensions and  instability in the banking world triggered by the Silicon Valley Bank (SVB) collapse in March 2023, compounds the challenges faced by MedTechs. Furthermore, global balance sheets have expanded at a much faster pace than Gross Domestic Product (GDP). Debt and asset prices have surged far more rapidly than productivity and economic output. This trend is underscored by a report published in May 2023 by the McKinsey Global Institute, which reveals that the past two decades have resulted in the creation of US$160trn in paper wealth but have been marked by sluggish growth and the rise of inequality. According to the report, every US$1 invested has generated US$1.9 in debt.
 
Strategic initiatives to adapt and thrive

When global balance sheets expand at a faster rate than GDP and debt and asset prices outpace productivity, it becomes a concerning sign for MedTechs who find themselves trapped in a strategic deadlock characterized by sluggish growth and a fading belief in long term value creation. Under these conditions, companies should expect to encounter funding limitations, decreased market demand, stricter regulatory obstacles, cost pressures, and increased market volatility. In such a testing business environment, it is important for MedTechs to adopt bold adaptive strategies and navigate wisely to ensure continuous growth and enhanced value. We suggest seven such initiatives that are likely to help MedTechs break free from their strategic cul-de-sacs. By implementing these with vigour, companies can position themselves for success in an ever-changing and demanding economic and geopolitical landscape.
1. Revamp R&D
 
In recent times, costs associated with MedTech R&D have escalated. A study published in the September 2022 edition of the Journal of the American Medical Association (JAMA), and carried out by the US government’s Office of Science and Technology Policy, found that the development cost for a complex therapeutic medical device, from proof of concept through post approval stages, is US$522m. Significantly, the nonclinical development stage accounted for 85% of this cost, whereas the US Food and Drug Administration (FDA) submission, review and approval stage comprised 0.5%.
You might also like:
 
Re-imagining healthcare
Thus, MedTechs have the potential to optimize their R&D processes, enabling them to develop more swiftly and economically ground-breaking devices that result in enhanced patient outcomes and expanded market share. To achieve this, companies may consider the following strategies to improve their R&D processes: (i) Integrating artificial intelligence (AI), machine learning, and big data techniques into their R&D endeavours and harnessing the power of these advanced technologies. (ii) Collaborating with academic institutions and start-ups to gain access to novel innovations and expertise. This collaboration can involve joint development and co-creation of innovative offerings. To tap into a diverse pool of expertise and resources, companies should consider a platform-based approach to R&D, which potentially improves the capacity to drive breakthrough advancements that improve patient care. (iii) Implementing agile methodologies to accelerate the R&D process, which involves breaking projects into smaller, more manageable segments and swiftly iterating based on stakeholder feedback. (iv) Engaging patients in the design process to ensure that newly developed offerings cater specifically to their needs, ultimately enhancing patient satisfaction.
 
2. Emphasize patient-centric care
 
Enhancing patient-centric care to improve outcomes is a crucial factor in the future of healthcare provision. There is a growing body of evidence indicating that patient choices will have an increased influence on the provision of healthcare over the next decade. With patients having more options and autonomy, MedTechs can leverage patient-centric strategies to better understand and address their needs, ultimately leading to improved market share. To achieve this, companies must prioritize effective communication, product education, and support services to build stronger relationships with patients. This requires increased utilization of electronic health records, advanced AI, data analytics capabilities, active engagement with patient communities, leveraging social media platforms, establishing patient advisory boards, and forging partnerships with payers and providers.
 
Further, embracing value-based care models is important for MedTechs. By prioritizing positive patient outcomes over quantity, companies can contribute to the development of sustainable care. As global healthcare systems transition toward value-based care, MedTech companies should align their offerings accordingly. Emphasizing solutions that enhance patient outcomes, reduce healthcare costs, and provide overall value positions, MedTechs become indispensable partners in the evolving healthcare landscape. This also may involve developing outcome-based pricing models, implementing remote monitoring solutions, and demonstrating real-world evidence of product effectiveness.
 
3. Revitalize organizational and operating models
 
Revitalizing organizational and operating models is essential for MedTechs to boost their growth rates and adapt to a rapidly evolving market. While companies experienced significant growth in the past, recent trends have shown a shift towards risk-averse bureaucracies, accepting modest annual growth rates as the "new normal". To overcome this stagnation and meet evolving customer demands, traditional MedTechs should consider embracing agile and flexible structures.
 
By flattening hierarchies and fostering cross-functional teams, organizations can facilitate faster decision-making processes. Implementing lean manufacturing and optimizing operational processes can reduce waste, enhance productivity, accelerate time to market, and lower costs. Leveraging AI-driven data analytics enables the extraction of valuable insights from vast datasets, empowering MedTechs to anticipate customer needs and market trends.

 
4. Harness the power of digital, AI and big data
 
Digital transformation has become a necessity rather than a choice. Although companies like Stryker and Siemens have championed digitalization, widespread implementation still remains a challenge. Indeed, Siemens’ suggests digitalization is “something that is often talked about but not fully implemented”. Previous Commentaries have shown how MedTechs can employ digital technologies to improve products, streamline operations, enhance customer experiences, and reduce costs. Streamlining operations and optimizing costs without compromising quality is crucial in the face of escalating economic pressures. This may involve re-evaluating supply chains, improving manufacturing processes, and adopting digital solutions.
 
In today's rapidly evolving digital age, investing in digital and analytics capabilities has become indispensable for companies as they shape their R&D, hone their processes and shift to a customer-centric stance. The seamless integration of digital and AI-driven techniques, along with data-driven decision processes, has emerged as a crucial factor in maintaining and improving competitiveness. For MedTechs, it is imperative to cultivate a culture of innovation that encourages and rewards experimentation and risk-taking. By doing so, organizations create an environment where employees are empowered to explore ideas, learn from failures, and ultimately drive meaningful innovations.  Therefore, actively seeking external partnerships with technology companies, start-ups and academic institutions is a strategic move for MedTechs to access cutting-edge technologies and expertise in digital and analytics. By embracing these capabilities as core rather than adjunct components of their strategies, fostering an innovation-centric culture, and investing in talent development and retention, corporations position themselves optimally to leverage the transformative potential of digital and analytical technologies. This, in turn enables them to thrive in an increasingly interconnected and data-driven healthcare ecosystem.

 
5. Talent acquisition and retention
 
The rapidly changing landscape of globalization, the increasing influence of AI techniques, and the demands of a new generation of consumers seeking personalized experiences have compelled MedTechs to reassess their approach to talent acquisition and retention. To keep up with the pace of change, it is crucial for these companies to attract and retain highly skilled professionals with expertise in technology, healthcare, and business. A talented workforce plays a vital role in driving innovation, ensuring efficient and safe processes, navigating complex market dynamics, and effectively executing growth strategies. To achieve this, companies should invest in the development of their employees, foster a culture of innovation, and offer competitive compensation packages to attract and retain top performers.
You might also like:
According to a study published by the Harvard Business Review in January 2020, retaining top talent has become increasingly challenging for employers. The study revealed that in 2018, 25% of employed Americans left their jobs, with approximately 33% of this turnover attributed to unsupportive management and a lack of development opportunities. MedTech companies are not exempt from this trend, and to acquire and retain talent, they must strategically revamp their value propositions to align with the evolving needs and expectations of the modern workforce.
A crucial step in this direction is fostering a purpose-driven culture that highlights the significant impact medical technology companies have on improving people's lives. By instilling a sense of purpose, employees are more likely to develop a strong connection to the company's mission, inspiring them to consistently deliver their best work. Furthermore, providing ample career development opportunities is essential in empowering employees to enhance their skills and progress in their professional journeys. This can be achieved through training programmes, mentoring initiatives, and leadership development schemes.
 
Recognizing the importance of work-life balance is also critical. MedTechs can prioritize flexible working hours, a 4-day week, remote work options, generous vacation policies, allowing employees to effectively balance their personal and professional lives. By creating a supportive environment that promotes overall well-being and job satisfaction, companies can foster employee loyalty.
 
Competitive compensation and benefit packages are essential. Additionally, a commitment to diversity and inclusion is pivotal for MedTechs aspiring to become employers of choice. By emphasizing diversity in hiring practices and cultivating an inclusive work environment where every individual feels valued and respected, corporations can attract and retain a diverse array of talent. This, in turn, creates an environment conducive to enhanced innovation, creativity, and problem-solving.
 
Despite best efforts, there may be instances where companies are unable to attract and retain individuals with the necessary capabilities. In such cases, strategic partnerships, joint ventures, licensing agreements, and co-development initiatives allow MedTechs to tap into external expertise and resources, which can be employed to enhance product portfolios and gain access to new markets.

 
6. Realize global opportunities
 
MedTechs, traditionally reliant on most of their revenues from affluent US and European markets, now have the chance to expand their horizons and explore the untapped potential of the rapidly growing markets in Asia, Middle East and Africa, and Latin America. These regions boast transitioning demographics, with aging populations and a surge in chronic diseases. Additionally, their large and expanding middle-class populations demand advanced care, prompting governments to increase their healthcare expenditures significantly. By venturing into and expanding their footprints in these markets, Western MedTechs can diversify their revenue streams and leverage the growth opportunities stemming from the escalating demand for cutting-edge medical technologies and services.
 
Expanding into emerging markets not only provides a means to mitigate risks associated with economic volatility and changing regulatory environments but also necessitates acquiring new capabilities, fostering a change in executive mindsets, and embracing flexible pricing models. By adapting to the unique demands and challenges of these markets, MedTechs can position themselves strategically to tap into the vast potential they offer. This expansion serves as a catalyst for sustained growth and allows companies to seize opportunities that would otherwise remain untapped, thus bolstering their long-term success.

 
7. Align with rising ESG standards
 
To fully leverage their capabilities and resources and meet rising standards in ESG (Environmental, Social, and Governance), MedTechs might consider taking bold actions that: (i) embrace sustainable manufacturing practices to minimize their environmental impact, which entail reducing waste, water, and energy consumption, as well as transitioning to renewable energy sources. Such practices contribute to environmental conservation and mitigate a company’s carbon footprint, (ii) adopt circular economy principles, which involve designing products with a focus on reusability and recyclability. Additionally, establishing take-back programmes for end-of-life products, which ensure responsible disposal and encourage the reuse of valuable materials, thereby reducing waste and promoting sustainability, (iii) develop products that improve patient health, safety, and overall quality of life. This requires a patient-centric mindset, discussed above, that emphasizes the social impact and positive contributions MedTechs can make to society, (iv) produce offerings that are accessible and affordable to all segments of society. By addressing underserved communities and partnering with them to provide better healthcare solutions, companies can contribute to reducing healthcare disparities and promote equitable access to quality care, (v) enhance transparency and accountability, which includes setting clear targets, regularly measuring and reporting progress, and disclosing ESG performance, and (vi) engage with stakeholders, such as investors, customers, payers, employees, and patients, to better understand their expectations and concerns regarding ESG issues. Such a bold proactive approach to ESG issues contributes to a more sustainable and equitable world, strengthens a company’s reputation, and fosters its long-term success.
 
Takeaways
 
In today's rapidly evolving and technology-driven world, a successful pivot for MedTechs, which have been financialized and now find themselves in a strategic cul-de-sac, requires a simultaneous introduction of the suggested strategic initiatives, rather than a sequential approach. To regain high growth rates and create long-term value, MedTechs must:
  1. Revamp R&D efforts to develop innovative solutions and services that address evolving market needs, prioritizing cost-effectiveness, and improved patient outcomes as primary drivers of value creation.
  2. Prioritize patient-centric care by delivering solutions and services that significantly enhance outcomes, establishing a reputation for consistent value provision.
  3. Revitalize outdated organizational and operating models through increased collaboration with industry stakeholders, enabling accelerated technology development and adoption. This ensures alignment with patient needs and facilitates swift market entry.
  4. Harness the transformative power of digital technologies, AI, and big data to unlock new possibilities for innovation, efficiency, and personalized healthcare experiences.
  5. Attract, retain, and develop talent equipped with 21st-century capabilities while fostering a purpose-driven culture that fuels innovation and drives organizational success.
  6. Recognize and capitalize on the vast and rapidly expanding opportunities present in emerging markets, approaching them with a strategic mindset.
  7. Align with ascending ESG standards, demonstrating a commitment to sustainability, ethical practices, and social responsibility, which reinforces the credibility and long-term viability of MedTechs.
By embracing these strategies simultaneously, corporations position themselves to navigate policy shifts, overcome global uncertainties, and take advantage of evolving technologies, which stand them in good stead to enhance their growth rates, and significantly improve their value.
view in full page
  • MedTech growth strategies have taken advantage of low interest rates and cheap money to debt finance acquisitions of near adjacent companies with existing tried and tested products
  • This allowed companies to expand their product portfolios, geographic reach, and customer bases
  • Many MedTechs preferred such a growth strategy to investing in R&D to develop disruptive technologies that maybe outside their immediate field of interest
  • These technologies include 3D bioprinting, robotics, virtual reality, biometric devices and wearables, digital therapeutics, and telemedicine
  • All are patient-centric software driven technologies rather than hardware devices that serve the needs of hospitals
  • All are positioned to influence the shape of healthcare systems over the next decade
  • Many MedTech R&D investments are devoted to making small improvements to legacy products that prioritize the interests of large healthcare organizations over the needs of patients
  • Traditional MedTech M&A-driven growth strategies that have benefitted from an era of low interest rates and cheap money may now be challenged in the current period of higher interest rates, stagnate growth and rapidly evolving disruptive healthcare technologies.
  
Healthcare disrupters
 
On March 10, 2023, the Silicon Valley Bank (SVB) collapsed after a series of ill-fated investment decisions triggered a run on its assets. It was the largest bank failure since the 2008 financial crisis and the second largest in US history. The demise of SVB triggered a subsequent free fall in the shares of the Silvergate Bank, the Signature Bank, and the First Republic Bank. Then, on March 17, Credit Suisse shares crashed. Despite a US$54bn lifeline from theSwiss National Bankon  March 19, the bank collapsed and was ‘acquired’ by UBS for ~US$3bn. This banking crisis could create a weakness in corporate balance sheets more generally. Especially in MedTechs that have borrowed heavily in an era of low interest rates and cheap money, and now might be challenged by higher rates, economic stagnation, and rapidly advancing software driven healthcare technologies. These include, 3D bioprinting, robotics, virtual reality (VR), biometric devices and wearables, digital therapeutics, and telemedicine. All are positioned to influence the shape of healthcare over the next decade by: (i) changing the way healthcare is delivered, (ii) improving patient outcomes, (iii) lowering healthcare costs, (iv) increasing access to care, and (v) creating new business models as value shifts from hardware to software. Should the banking collapse be a warning to traditional MedTechs whose preferred growth strategies have been debt financed acquisitions of near adjacent companies with physical product offerings optimised for hospitals?
 
In this Commentary

This Commentary explores the potential vulnerability of some MedTechs that have taken advantage of the recent period of low interest rates and cheap money to pursue growth strategies dominated by the acquisition of near adjacent companies, and have not balanced this with investments in innovative technologies. These may not fit neatly into their existing product portfolios and business models but are positioned to have a significant influence on the medical technology industry and healthcare systems over the next decade. Such technologies include: 3D bioprinting, robotics, virtual reality (VR), biometric devices and wearables, digital therapeutics, and telemedicine. Before describing these, we briefly outline the causes of the recent banking crisis and suggest how it might signal a weakness in corporate balance sheets more generally.
 
The demise of SVB

Founded in 1983, headquartered in Santa Clara, California, USA, SVB was the preferred bank of the large and rapidly growing tech sector, and it quickly grew to become the 16th largest bank in America. Tech companies used SVB to hold their cash for payroll and other business expenses, which resulted in a significant inflow of deposits. Banks only keep a portion of such deposits as cash and invest the rest. Like many other banks, SVB invested billions in long-dated US government bonds. [Bonds are debt obligations, where an investor loans a sum of money (the principal) to a government or company for a set period, and in return receives a series of interest payments (the yield). When the bond reaches its maturity, the principal is returned to the investor]. Bonds have an inverse relationship with interest rates; when rates rise, bond yields and prices fall. During the past decade of historically low interest rates, bonds became a preferred investment vehicle. SVB’s problem arose when central banks throughout the world increased rates to curb inflation, partly caused by the hike in energy prices following the Ukraine war. For instance, in 2022, the American Federal Reserve raised interest rates seven times; from ~0 to 4.5%. As interest rates rose, SVB’s large bond portfolio lost money and the bank was forced to sell its bonds at a loss. On March 8, SVB announced a US$1.75bn capital raise to plug the gap caused by the sale of its loss-making bonds. This alerted customers to SVB’s financial challenges. They started withdrawing their deposits, which triggered a run on the bank.
MedTech growth strategies

Sudden hikes in interest rates may sound alarm bells for some traditional MedTechs that have pursued debt financing to acquire near adjacent companies rather than invest in R&D to develop disruptive technologies and innovative offerings. While R&D is a critical component of the industry, it is a complex and costly process, which often takes years to yield a product that can be marketed and generate revenue. By contrast, M&A activity allows companies to acquire existing products and technologies that have already been developed and tested, which reduces the risk and uncertainty of R&D. Further, with the industry becoming increasingly competitive, MedTechs need to achieve scale and market share to remain relevant. This can be achieved by the acquisition of near adjacencies, which allows acquirers to quickly expand their product portfolios, geographic reach, and customer base.

You might also like:

Have diversified medical technology companies blown their competitive advantage?


Can elephants be taught to dance?

 
The recent era of low interest rates and cheap money reinforced debt financed acquisitions as a growth strategy. Between 2011 and 2021, there were 2,365 M&A deals in the MedTech industry globally. However, to the extent that MedTechs focussed their acquisitions on near adjacencies, they may have missed out on acquiring innovative technologies positioned to reshape the industry over the next decade. This is because disruptive technologies often come from outside a company's core business and may not be immediately obvious to its leaders. Further, indebted companies facing high interest rates, might feel obliged to increase their revenues, which could result in them doubling down on cost cutting and optimizing their legacy products rather than investing in innovative R&D to drive revenue growth. Companies that adopt such business models could be at risk of having a dearth of technologies to drive future growth in a significantly more competitive healthcare ecosystem and challenging financial markets.
 
Disruptive technologies

The disruptive technologies we mention above shift the needle from hardware to software, from the needs of organizations to the needs of patients. While most of these are in their infancy, they all have the potential to transform healthcare in the next decade by providing new treatments for a variety of diseases and injuries, advancing drug development, enabling personalized medicine, reducing healthcare costs and improving medical training and surgical procedures. Let us explore these in a little more detail.

3D bioprinting

Three dimensional (3D) bioprinting is a relatively new technology, which involves the creation of 3D structures using living cells and holds promise for the future of regenerative medicine. The technology is an additive manufacturing process like 3D printing, which uses a digital file as a design to print an object layer by layer. However, 3D bioprinters print with cells and biomaterials, creating organ-like structures that let living cells multiply.

In 1999, a group of scientists at the Wake Forest Institute for Regenerative Medicine led by Anthony Atala, a bioengineer, urologist, and pediatric surgeon, created the first artificial organ with the use of bioprinting. Soon afterwards, bioprinting companies like Cellink (Sweden), Allevi (Italy), Regemat (Spain), and RegenHU (Switzerland) evolved. In 2010, Organovo, a biotech company founded in 2007 and based in San Diego, California, USA, introduced the first commercial bioprinter capable of producing functional human tissues that mimic key aspects of human biology and disease. In 2014, the company was the first to successfully engineer commercially available 3D-bioprinted human livers and kidneys. In 2019, researchers at Rensselaer Polytechnic Institute, New York, USA developed a way to 3D bioprint living skin, complete with blood vessels. Also in 2019, researchers at Tel Aviv University in Israel announced the creation of a 3D bioprinted heart using a patient's own cells. Today, 3D bioprinting is used to create a wide range of tissues and organs, including skin, bone, cartilage, liver, and heart tissue.
You might also like:
One of the most promising applications of 3D bioprinting is the creation of replacement organs using a patient's own cells. This could potentially eliminate the need for organ donors and reduce the risk of rejection. The technology also can be used to create complex tissues and structures, such as blood vessels, skin, and bone, which could be useful for patients with severe burns or injuries, as well as those with degenerative diseases. Further, 3D bioprinting can be used to create realistic models of human tissues for drug development and testing, which could help to reduce the cost and time associated with drug development, as well as reduce the need for animal testing. 3D bioprinting could enable the creation of customized implants and prosthetics that are tailored to a patient's unique anatomy.

According to findings of a 2023 report by MarketsandMarkets, in 2022, the global 3D bioprinting market was ~US$1.3bn, and expected to grow at a compound annual growth rate (CAGR) of ~21% and reach >US$3bn by 2027.
Robotics

Medical and surgical robotics have a relatively short history. The first robot-assisted surgical system, the PUMA 560, [Programmable Universal Machine for Assembly], was developed in 1985 by the engineering firm Unimation, and used to perform a neurosurgical biopsy. A decade later, in 1994, the FDA approved the first robotic system for laparoscopic surgery, the Automated Endoscopic System for Optimal Positioning (AESOP), which was superseded in 2001 by the ZEUS Robotic Surgical System. In the late 1990s and early 2000s, researchers began exploring miniature in vivo robots for minimally invasive procedures. In 2000, the first robotic system designed for spinal surgery, SpineAssist, was developed by Mazor Robotics, an Israeli company, which Medronic’s acquired in 2018. In the mid-2000s, researchers began developing robots for use in orthopaedic surgery. Perhaps the biggest influence on robotic surgery was made by  Intuitive Surgical, an American company founded in 1995. Intuitive developed the da Vinci Surgical System, which was approved by the FDA in 2000 and quickly became the most widely used surgical robot in the world. It has been used in millions of procedures across a wide range of specialities. Today, Intuitive Surgical is a Nasdaq traded company with a market cap of >US$84bn, annual revenues >US$6bn and >12,000 employees.
Medical and surgical robotics continue to evolve, with new technologies and applications being developed all the time. Such technologies offer the potential for more precise, efficient, and less invasive procedures, reduced operating times, improved accuracy, and fewer surgical complications. Demand for surgical robotics is increasing as are investments in robotic surgery companies and an increasing number of hospitals around the world are investing in robots. In the US, >250 hospitals use surgical robots for complex operations. Europe has also seen an increase in the number of hospitals that utilize robots for medical purposes. In 2016, there were over 7,000 medical robots in use globally, today there are >20,000.


You might also like:
According to a Verified Market Research report, in 2021 the global market for medical robots was ~US$11bn and is expected to reach ~US$35bn by 2030. Scientists are developing the next generation of microbots, which are small enough to seamlessly travel through the human body performing repairs.
 
Virtual reality

The use of virtual reality (VR) in healthcare has been growing rapidly in recent years, but its history only dates from the early 1990s, when the first VR applications in healthcare focused on pain management and distraction therapy. In the late 1990s and early 2000s, researchers began exploring the use of VR for a wider range of medical applications, including surgical simulation, medical education, and mental health therapy. In recent years, the technology has been used in pain management, physical therapy, treatment of phobias and anxiety disorders, and to improve quality of life for hospice patients. During the Covid-19 pandemic, VR was used to help healthcare workers train for and cope with the challenges of the pandemic, as well as to provide virtual healthcare visits to patients who were unable to receive in-person care.

VR healthcare start-ups have attracted attention from major players. For example, in February 2020, Medtronic acquired UK start-up Digital Surgery for >US$300m. Founded in 2013 by two former surgeons, Digital Surgery first made waves with an app to help train surgeons using a database of common procedures. It also developed VR software to train doctors as well as AI tools for surgeons in the operating room. OxfordVR is also a British VR start-up. Founded in 2017 by Daniel Freeman, Professor of Clinical Psychology at Oxford University, the company is focused on mental health applications and has successfully automated psychological therapy. Users are guided by a virtual coach instead of a real-life therapist, which allows the treatment to reach significantly more patients. Another notable VR start-up is Firsthand Technology, founded in 2016 and headquartered in California, USA.  The company's flagship product is a VR distraction therapy (VRDT) that offers immersive experiences designed to distract patients from the discomfort and anxiety associated with medical procedures. The company's offerings demonstrate the importance of addressing the psychological and emotional factors that impact health and well-being. In January 2020, Pear Therapeutics, a leader in digital prescriptions acquired Firsthand.

Over the next decade, expect VR to improve medical/surgical training by providing immersive, realistic simulations for medical students and health professionals, allowing them to practice procedures and techniques in a safe and controlled environment. In addition to helping patients to reduce pain and anxiety during medical procedures, VR can help to overcome barriers to care, such as distance and mobility, by providing virtual healthcare visits and remote monitoring of patients. Also, the technology is positioned to improve surgical planning. By providing surgeons with 3D models of patients' anatomy, allowing for more precise surgical planning, and reducing the risk of complications. Further, it can be used in physical therapy to improve patient engagement and motivation, leading to faster recovery times.

According to a 2021 Verified Market Research report, the VR healthcare market was valued at ~US$3bn in 2019, and is projected to reach ~US$57bn by 2030.
 
You might also like:

Should MedTechs follow surgeons or patients?

Biometric devices and wearables

Biometric devices and wearable technologies aim to empower people with granular data that leads to actionable healthcare insights. It gives people the ability to collect their own health data and report them in a digital format to physicians, thus eliminating the need for in-person appointments for simple check-ups. Insurers and providers have also bought into wearable devices, relying on data collected from them to inform personalized health plans. Corporations too have adopted them to encourage healthy habits among employees working from home.
The use of biometric devices and wearables in healthcare has a relatively short, but influential history. In the early 2000s, the first commercial monitors were introduced, which allowed athletes to track their heart rates during exercise. The technology can provide a wealth of data about a patient's health, allowing healthcare providers to tailor treatment plans to individual patients, monitor chronic disorders, detect changes in real-time and intervene expeditiously. Biometric devices and wearables can help to detect early signs of illness or disease and can help patients to take a more active role in their own health and wellness. The technology has the potential to reduce the cost of care by enabling remote monitoring, preventing hospital readmissions, and reducing the need for in-person visits. Further, it can provide researchers with large amounts of patient data to facilitate AI-driven research into disease prevention and treatment.
 
One successful biometric device company is Fitbit, which was founded in 2007 and is headquartered in San Francisco, California, USA. Fitbit offers a range of wearable devices that track physical activity, heart rate, sleep patterns, and other biometric data. The company’s products include smartwatches, activity trackers, and wireless headphones that integrate with its mobile app and web-based platform to provide users with personalized health and fitness insights. The company has developed partnerships with insurers and healthcare providers to use its products as part of employee wellness programmes. Since its founding, the company has sold >120m devices. In 2019, Fitbit was acquired by Google for US$2.1bn, which is a testament to the value of biometric data and the potential of wearables to transform healthcare.
 
The Apple Watch is the other market leader. Its first edition, launched in 2010, included features for tracking physical activity, heart rate, and other health metrics. An upgraded version, released in April 2015, helped to establish the health tracking market, which led to the mass adoption of wearable technologies. From the outset, the Apple Watch was conceptualized as a device that would help people stay connected in less invasive ways than with smartphones. Each iteration since its inception has increased the watch’s focus on improving health and wellbeing. In 2018, it was approved by the FDA as a medical device capable of alerting users to abnormal heart rhythms. Today there are ~150m Apple Watch users.
 
Another leader in the wearable sensor market is Abbott Laboratories, which provides a range of services for diabetes and cardiology. In November 2018, the company received FDA clearance for its FreeStyle Libre, a glucose reader smartphone app. Oura Health, a Finnish company founded in 2013, has launched a health wearable product in the form of a small ring that tracks activity, heart rate, body temperature, respiratory rate, and sleep data. As the technology continues to evolve, biometric devices and wearables are likely to play an increasing role in healthcare by helping people to participate in their own health and wellness, improving medical outcomes, and reducing healthcare costs.
 
According to findings from a 2019 ResearchandMarkets report, the wearable health technology industry is projected to see a CAGR >25% between 2020-2027, and annual sales are expected to reach ~US$60bn by 2027.
 
Digital Therapeutics
 
Digital therapeutics (DTx) are software-based interventions that aim to prevent, manage, or treat medical conditions by modifying patients’ behaviours. The therapeutics are delivered through mobile apps, virtual reality, or digital platforms. Their use in healthcare is growing, and the history of DTx can be traced back to the late 1990s when the first digital intervention for substance abuse was developed. In the early 2000s, a few digital interventions were introduced to manage chronic conditions such as diabetes and hypertension. However, it was not until the 2010s when the use of DTx started to gain momentum, driven by technological advances, the growing prevalence of chronic diseases, and the need for more cost-effective healthcare solutions.
 
In the November 2020 edition of Scientific America, DTx were ranked in the top-10 emerging technologies, which have demonstrated an ability to prevent and treat a variety of chronic conditions. In September 2017, Pear Therapeutics digital software programme, reSET, became the first FDA-approved DTx for substance use disorders (SUD) involving alcohol, cocaine, marijuana, and stimulants. According to the US Centers for Disease Control and Prevention (CDC) >40m Americans, ≥12 years presented with SUDs in 2022. In 2020, Pear received FDA clearance for Somryst, an insomnia therapy app. The company has a pipeline of DTx offerings for a wide range of conditions, including multiple sclerosis, epilepsy, post-traumatic stress disorder and traumatic brain injury. In 2020, the FDA approved EndeavorRx, which is produced by Boston based Akili Inc and is the first DTx delivered as a video game for children with attention deficit hyperactivity disorder (ADHD). Omada Health, is another digital therapeutics start-up, founded in 2011 and headquartered in California, USA, which provides personalized coaching and support to individuals with chronic health conditions.

Given that DTx are evidence-based and personalized, they can be tailored to meet the unique needs of each patient. This individualized approach can lead to enhanced patient outcomes and improved quality of life. DTx are often more cost-effective than traditional therapies, as they eliminate the need for in-person visits and reduce the need for expensive medications. This could help to lower healthcare costs. Digital therapeutics can be accessed from anywhere, any time and on any device, making them particularly useful for patients in remote or underserved regions. This could help to improve access to healthcare for millions of people. DTx can be integrated with other healthcare technologies, such as wearables, mobile health apps, and electronic health records, to provide a comprehensive approach to healthcare. This could lead to improved coordination of care and better health outcomes. Further, DTx could bring about a shift in treatment paradigms and change the way we approach chronic diseases: instead of relying solely on medications, patients could use digital therapeutics to manage their conditions and improve their overall health.

The FDA has created a new classification for digital therapeutics, which is likely to make it easier for more DTx solutions and services to obtain regulatory approval. In a 2020 survey of MedTech leaders by Deloitte, a consulting firm, 63% of respondents agreed that DTx will have a significant impact on the industry over the next 10 years. A report by Grand View Research, suggested that the global digital therapeutics market was valued at US$4.20bn in 2021, and is estimated to grow at a CAGR of ~26% from 2022 to 2030. 

 
Telemedicine

The practice of using telecommunications and information technologies to provide remote medical services, has a history dating back to the early 20th century. In 1924, the first radiologic images were transmitted by telephone between two towns in West Virginia, USA. In the 1950s and 1960s, the technology began to advance, and the first video consultation between a patient and a physician was conducted. In the 1970s, NASA began using telemedicine to provide medical care to astronauts in space. In 2001, the Indian Space Research Organization successfully linked large city hospitals and healthcare centres in remote rural areas. With the development of the internet in 1990s, remote healthcare exchanges became more widespread, particularly in rural areas where access to medical services were limited. In 1993, the American Telemedicine Association (ATA) was founded to promote the use of the technology. Since then, telemedicine has continued to evolve and expand.
The Covid-19 pandemic led to a surge in telemedicine usage as healthcare providers looked for ways to provide care while minimizing in-person contact. Based on a survey by McKinsey, a consulting firm; before the pandemic in 2019, ~11% of US patients used telehealth services. After COVID, that number had grown to ~50%. Some estimates suggest that during the height of the pandemic, the number of telemedicine appointments increased by 5,000%. According to McKinsey’s, 76% of US consumers report that they are interested in using telehealth in the future as a way to complement in-person physician visits.In August 2020, digital health history was made with the merger of two of the largest publicly traded virtual care companies Teladoc and Livongo. The former, a multi-billion-dollar market leader in telemedicine founded in 2002, and the latter, a multi-billion-dollar market leader in remote patient monitoring. The deal created a US$38bn entity, which was the market’s first full-stack virtual health company. Today, virtual health is a rapidly growing field, and combines virtual physician visits, remote patient monitoring, chatbots, algorithms, and analytics.
You might also like: 
Over the next decade, AI-powered telemedicine tools are likely to become more prevalent, helping to streamline and automate many aspects of the care delivery process, such as triage, diagnosis, and treatment plans. Remote patient monitoring technologies are likely to become more advanced and widespread, allowing healthcare providers to monitor patients’ health and vital signs remotely, which can improve outcomes and reduce hospitalizations. Expect healthcare providers to increasingly work as part of virtual care teams, collaborating with other health professionals, including specialists, to deliver care to patients in real-time, regardless of location. Telemedicine will continue to improve access to care, particularly for underserved populations such as those in rural and remote areas, and those with limited mobility or poor transportation options. The technology will also facilitate more personalized and patient-centred care, as providers will be able to tailor care plans to the specific needs and preferences of individual patients.

According to a report by MarketResearchFuture, the current global telemedicine market size is valued at ~US$67bn and is expected to reach >US$405bn by 2030, exhibiting a compound annual growth rate of >22%.

 
Takeaways

We have described six evolving software driven technologies positioned to significantly influence healthcare systems in the next decade. Note that all are software driven and focused on patients to make care more personalized and sensitive to specific needs of individuals. Such technologies are in stark contrast to traditional medical devices, which overwhelmingly are physical devices designed to serve hospitals, rather than individual patients. Such a focus can lead to a lack of innovation, higher costs for patients, lower quality of care, and less personalized treatment options. A shift towards technology optimized to deliver patient-centered care is necessary to improve the quality of healthcare and ensure that patients receive the best possible outcomes. From our analysis it is not altogether clear whether traditional MedTechs are well positioned to achieve this.
view in full page
  • For the past three decades care has been moving out of hospitals into peoples’ homes
  • This is a significant and rapidly growing shift positioned to accelerate over the next decade
  • Driving this change are significant structural, organizational, and social factors
  • An early wave of new entrant digital ‘pure plays’ started to take advantage of this move ~3 decades ago and developed innovative software health solutions and services for people to consume in their homes
  • Later, there followed a second wave, comprised of several giant diversified healthcare companies that created and marketed digital home health offerings
  • The majority of traditional MedTechs have not responded to this shift and continue to produce physical devices for episodic surgical interventions in hospital operating rooms
  • Could their failure to develop software solutions for care in the home be an obstacle to their future growth and competitive advantage?
  
Out of the hospital into the home
A bridge too far or one that traditional MedTechs must cross?
 
On 30th January 2023, England's state funded National Health Service (NHS) announced a two-year recovery plan to help restore emergency care and frontline services. The plan, backed by a £1bn (US$1.2bn) fund, will increase virtual hospitals where patients receive high-tech care in their homes. It also includes 5,000 new hospital beds that will boost capacity by 5%, and 800 new ambulances, which will increase the fleet by 10%. Currently, England has ~7,000 virtual ward beds in the community. By 2024, ~50,000 patients a month are expected to benefit from these, which shall provide care mostly for elderly patients with chronic lifetime conditions. NHS virtual hospitals will be supported by a range of wearables and medical devices to diagnose and monitor patients’ conditions and share the data with their physicians in real time. This is not a new phenomenon; in 2006, China responded to its shortage of health professionals by developing virtual (internet) hospitals, and by mid-2021 there were >1,600 of them providing convenient and efficient medical services to millions of patients in their homes.

The UK government’s NHS recovery plan is a response to a series of strikes by health workers, protesting about staff shortages and deteriorating hospital conditions. Currently, there are >130,000 vacancies in the NHS; a vacancy rate of ~10%. Last December (2022), 54,000 people in England waited >12 hours for an emergency hospital admission. The figure was virtually zero before the pandemic. The average wait time for an ambulance to attend a stroke or heart attack in December 2022 was >1.5hrs, while the target is 18 minutes. In September 2022, >7m people in England were waiting to start NHS hospital treatments, which is the highest number since records began in August 2007. Surgeons were reported to being frustrated because operating rooms were not being used due to a lack of beds and staff.

This is not simply a UK problem. Since December 2022, health workers in the US, and France have engaged in similar strikes to protest about deteriorating hospital conditions. According to the World Health Organization (WHO), such protests are manifestations of a global shortage of medical staff. “All countries face challenges in training, recruitment, and the distribution of health professionals”, says the WHO, and suggests that by 2030, the global shortage of medical staff will mount to ~15m.  To the extent that a significant element of the challenges facing healthcare systems is staff shortages, it is not altogether clear how the British government’s recovery plan to increase NHS hospital beds and services will work if there is a dearth of health professionals.

 

In this Commentary

This Commentary suggests that the movement of care out of hospitals to peoples’ homes is not just a passing political response to a temporary crisis. The shift is driven by significant structural, organizational, and social factors, which we describe.  Since the late 1980s these factors have been gaining momentum and are positioned to have a defining influence over the next decade. Two distinct ‘waves’ of medical technology companies have taken advantage of this shift. The first wave started ~3 decades ago with several digital ‘pure play’ new entrants, which included ResMed, Propeller Health, Teladoc Health, Livongo Health, and Masimo. These companies all developed and marketed software health solutions to be consumed by patients in their homes. Later, there followed a second wave, comprised of a few giant diversified healthcare companies that included Philips,Medtronic, and Johnson & Johnson, which successfully entered the digital home care market. Notwithstanding, the overwhelming majority of traditional MedTechs have not developed digital solutions and services for patients to consume in their homes. Is this “a bridge too far” for them, or a bridge they must cross if they want to increase their growth rates and competitiveness?
1st wave: digital pure plays
 
ResMed
An early pure play that developed digital health solutions and services to be consumed by patients in their homes is ResMed, (an abbreviation of ‘respiratory medicine’), which started life in the late 1980s in Australia. In 1981, Colin Sullivan, a Professor of Medicine at the University of Sydney, developed and patented a continuous positive airway pressure (CPAP) device, which was the first successful non-invasive treatment for obstructive sleep apnea (OSA). Before Sullivan’s invention, the treatment for chronic OSA was a tracheostomy, where a hole is made through the neck into the trachea so breathing can bypass the nose and mouth. Initially, Sullivan partnered with Baxter, a US multinational medical technology company, to help commercialize his technology. In 1989, Baxter decided not to enter the sleep apnea market, and Peter Farrell, a Baxter executive, led a management buyout to acquire the technology and established ResMed in Australia. In 1990, the company relocated to San Diego, USA, and today, is a world leading software-driven, medical device enterprise, traded on the New York Stock Exchange (NYSE), with a market cap ~US$32.5bn, annual revenues ~US$3.6bn, >8,000 employees and a presence in >140 countries. Its main product offering, the AirView™ telehealth platform, is a secure, cloud-based system, which enables patients with sleep-disordered breathing and respiratory insufficiencies to be treated in the comfort of their own homes. The device provides real-time patient data, personalized insights, and proactive alerts that allow physicians to remotely monitor and connect to their patients. ResMed has >10m, cloud enabled, home care devices in the market and has accrued ~5bn nights of medical sleep and respiratory care data.
 
Propeller Health
In 2019, ResMed acquired Propeller Health for US$225m, but the company continued to operate as a standalone business. Founded in 2007, Propeller developed a mobile platform that offers sensors, mobile apps, analytics, and services to support respiratory health management. It is now a world leader in providing digital health solutions that keep patients with chronic obstructive pulmonary disease (COPD) and asthma out of hospital. The company’s sensors attach to patients’ inhalers and through its app, users can track their medication use, record their symptoms, receive environmental forecasts, which could affect their conditions, and download progress reports to share with their physicians. The app allows health providers to monitor their patients’ progress remotely, adjust treatment plans based on objective data and intervene when necessary. Propeller’s clinically validated solutions have found favour with US health insurers because they have demonstrated ~58% improvement in medication adherence, ~48% increase in symptom-free days, ~53% reduction in hospital visits and lowered costs of treating COPD, a condition that affects ~24m American adults and costs ~US$50bn to treat each year. In 2017, Fast Company named Propeller as one of the “most innovative companies”. In January 2019, the company launched ‘My Pharmacy’ with Walgreens as an in-app feature that allows users to manage their prescription refills for COPD and asthma and to locate a nearby pharmacy. The company quickly expanded this feature to CVS, Kroger, Rite-Aid and Walmartfive of the seven largest pharmaceutical providers in the US.
 

Teladoc Health
Another early digital pure play is Teladoc Health, an American enterprise founded 21 years ago to provide convenient home healthcare for those who have difficulty accessing traditional healthcare services. Initially, it provided telephone-based physician consultations and medical advice. In 2006, the company added a proprietary digital platform, which enabled patients to securely upload medical records, images, and notes and share them with their doctors. This allowed physicians to assess a patient’s medical information and provide appropriate treatment plans quickly and easily. Teladoc continued to expand its services, including the introduction of remote medical consultations and a suite of digital health tools. Today, the company is a multinational telemedicine and virtual healthcare corporation. Its offerings include virtual care services and digital health solutions, medical opinions, artificial intelligence (AI) and machine learning (ML) driven analytics, telehealth devices and licensable platform services. Its primary services, which have expansive clinical depth and breadth across >450 medical subspecialties, are available in 40 languages and 175 countries.
 

Livongo Health
In 2020, Teladoc acquired Livongo Health, another pure play, in a deal valued at US$18.5bn, which is the largest digital health transaction in history, and created a combined entity valued at ~US$38bn. Livongo was founded in 2008, with a mission “to make virtual care the first step on any healthcare journey”. In July 2019, the company successfully IPO’d and raised US$335m. Until its merger with Teladoc, Livongo traded on Nasdaq and reached a market cap of ~US$14bn. The company’s principal offering is a digital platform that collects data from connected devices, wearables, and mobile apps to provide users with personalized care plans, coaching, and support to help them accomplish their medical goals from the comfort of their homes. A joint statement from the two companies at the time of the merger said that the combination is expected, “to create substantial value across the healthcare ecosystem, enabling clients everywhere to offer high quality, personalized, technology-enabled longitudinal care that improves outcomes and lowers costs across the full spectrum of health".
Masimo
Masimo is a digital pure play founded in 1989 by Joe Kiani, an Iranian American with the mission to create innovative digital patient centric medical solutions that improve outcomes and lower health costs. Over the past three decades Masimo has helped to make in-home medical care more accessible and affordable. Its digital offerings help to automate processes, reduce costs, and streamline communications between providers and patients. The company’s first product was a digital stethoscope, a device, which enables doctors to monitor a patient’s heart sounds remotely.
You might also like: 
Kaini, an electrical engineer by training, has >500 patents or patent applications for advanced signal processing, optical sensors, and wearable technologies, and is the company’s current chair and CEO. Masimo became a Nasdaq traded company in 2007, and today is a global player with a market cap of ~US$9bn, annual revenues ~US$1.25bn and >5,300 employees. The company has grown to become a leader in the digital healthcare space by developing and marketing a range of offerings, including a clinical decision support and monitoring platform, which helps to provide convenient and cost-effective care in patients’ homes.  Its core offering, a pulse oximeter, is a non-invasive, medical device that can easily be clipped onto a finger or toe to provide accurate readings in just seconds and is used to diagnose and monitor the amount of oxygen in the blood of people with respiratory conditions, such as COPD and asthma. Previously, blood oxygen levels could only be determined in a laboratory on a drawn blood sample. The pulse oximeter is also used for monitoring newborns, the elderly, and athletes, and each year monitors >200m patients.
 
In 2020, in response to the COVID-19 pandemic, the company introduced the Masimo SafetyNet for smartphones. In addition to helping combat COVID-19, the device can also be configured to help physicians create, relay, and manage treatment plans for >150 other health needs. In 2022, the company launched its W1 Health Watch, which is a water-resistant and dust-proof consumer-oriented health monitoring device equipped with a range of sensors and sensor-based algorithms that are designed to give users a comprehensive overview of their health. The watch also has an emergency feature that can detect and alert specified contacts if the wearer is in distress.
 
Factors driving care out of hospitals into homes
 
Since this first wave of digital health pure plays, there have been several significant structural, organizational, and social factors that have gained momentum and together helped to drive care out of hospitals into homes. We briefly describe these.

(i) Demographics: aging populations and escalating chronic lifetime disorders
United Nation’s data on global population trends suggest that by 2050, one in six people will be ≥65, (16%), up from one in 11 in 2019 (9%). According to the US Census Bureau, in 2022, there were ~56m Americans ≥65, which is ~17% of the population. This figure is projected to reach >73m by 2030 and ~86m by 2050: ~22% of the population. In the US, ~60% of adults have chronic diseases. According to the Centers for Disease Control and Prevention (CDCP), 90% of America’s ~US$4trn annual healthcare costs is attributed to people with chronic lifetime diseases and mental health conditions.

Since 2000, in the US, 18% of healthcare professionals have quit their jobs. According to data published in June 2021 by the Association of American Medical Colleges (AAMC), the US could see a shortfall between ~37,800 and ~124,000 physicians by 2034, with the largest disparities being in specialty doctors. These data suggest that, over the next decade, there will be fewer hospital resources available to care for a growing aging population with complex healthcare needs.


(ii) Technological advances
Technological advances are changing how clinicians practice medicine, how consumers manage their own health, and how patients and providers interact.

Remote patient monitoring, video conferencing, telemedicine, and mobile health applications have enabled care to move out of hospitals and into peoples' homes. Remote patient monitoring allows healthcare professionals to monitor a patient's vital signs and other health data remotely. Video conferencing provides patients with the ability to have real-time consultations with their physicians. Telemedicine allows a patient’s medical information to be securely shared with a range of healthcare providers, which increases access to care, and enhances its coordination. Mobile health applications allow patients to track their health data and receive reminders for taking medications, scheduling appointments, and other health-related tasks. These technological advances have enabled healthcare workers to deliver care to patients in their own homes, reducing the need for in-person visits to a hospital. AI and ML big data advances have facilitated remote diagnosis and monitoring and improved communications between healthcare providers and patients. Further, AI-powered chatbots help patients navigate healthcare systems, make appointments, and answer medical questions more quickly and accurately than traditional methods.
You might also like:

Can elephants be taught to dance?


 
(iii) Regulations
The US Food and Drug Administration (FDA) has revised its healthcare regulations to include the acceptance of algorithms for use in the healthcare industry. Since 1995, the FDA has authorized >500 AI-enabled medical devices. By providing for the use of algorithms, the FDA is helping to move care out of hospitals into homes. Recently, the agency set up the Digital Health Center of Excellence (DHCoE) to “empower stakeholders to advance healthcare by fostering responsible and high-quality digital health innovation”.
(iv) Payors’ policies
In most nations, governments increasingly offer coverage for in-home health care services. We have mentioned government backed virtual hospitals in the UK and China. In the US, Medicare, and Medicaid [federal and state healthcare insurance programmes] have expanded their benefits to support home health care. The agencies' reimbursement policies are becoming more favourable in providing value-based healthcare for improved patient outcomes at lower costs. As a consequence, in-home care has become a modality of choice for treatment. Medicare now covers a variety of telehealth services, including remote patient monitoring, and the Medicare Advantage plans [Medicare-approved plans from private insurance companies] are now required to cover certain home health services, including skilled nursing, as well as medical equipment and supplies. Additionally, Medicaid programmes have implemented waivers that allow for some long-term health services to be provided in peoples’ homes. According to the US Centers for Medicare & Medicaid Services, spending on home healthcare services in America rose from ~$37bn in 2000 to >$97bn in 2018; an overall increase of ~161%.
 
Over the past decade, an increasing number of American private insurance plans have extended their cover for home health services. Research published in March 2022 by Deloitte, a consulting firm, suggests that over the next decade, as digital pure plays continue to grow and increase their capabilities, major health plans (government and commercial) will increase their partnerships with them. Deloitte suggests that by 2030, “>25% of health plans’ net profits will shift to digital health entrants”. According to a recent market analysis by GrandViewResearch, the global home healthcare market was valued at ~US$336bn in 2021 and is expected to expand at a compound annual growth rate (CAGR) of ~8% from 2022 to 2030.

 
(v) The rise of consumer power in healthcare
The rise of consumerism in healthcare has increased the emphasis on patient empowerment, convenience, cost-effectiveness, and home care. In 2018, Gordon Moore et al provided a compelling rationale of the significant rise of consumerism in healthcare in a book entitled ‘Choice Matters. Moore, Professor of Population Medicine at Harvard University Medical School, identified the growing influence of patients, which previously had been largely overlooked. Over the past three decades patients have become more knowledgeable about health and this has empowered them to take added charge of their own health and seek out the best possible care for their individual needs. This has helped to drive care out of hospitals and into the home, where patients can receive personalized treatment in a comfortable, familiar setting. Moore argues that patients have more choices than ever before and increasingly demonstrate an ability to make informed decisions about their health. Choice Matters stresses the importance to understand both the medical and financial implications of patients’ decisions and how they help to shape technology, inform public policy, and trigger healthcare initiatives. Moore’s thesis discusses the growing implications of consumer-driven healthcare and explores how the marketplace is evolving in response to the changing needs of patients. The book outlines a variety of arguments that support the idea of healthcare decentralization, such as the need for care to be tailored to an individual's unique needs and preferences, the advantages of providing care in the home, and the potential cost savings associated with these changes. Moore also highlights the value of integrating technology into the home-based care model and the potential of this delivering increased efficiency and improved outcomes for patients. Today, consumerism in healthcare is challenging the traditional medical modality of diagnosis and treatment by putting a greater emphasis on lifestyles and prevention.
 
2nd wave: giant healthcare companies
 
The commercial success of the first wave of digital health pure plays, together with the factors we outlined above, made some giant diversified healthcare companies rethink their business models and employ AI and ML big data strategies to develop and market health solutions and services for people to consume in their homes. These companies include Philips, Medtronic, and Johnson & Johnson; together they represent a second wave of healthcare companies that have successfully gained access to new revenue streams by serving the large and growing home care market. Here we briefly describe some of their digital offerings.
 
The Philips HealthSuite digital platform is designed to help healthcare providers deliver patient-centric  care, reduce costs, and improve outcomes. The platform is powered by the cloud and includes a suite of AI big data analytic tools, which support the monitoring of patients in their homes, and allows physicians to access real-time health information and respond quickly to any changes in a patient’s condition. Similarly, Medtronic’s CareLink™ remote monitoring platform supports home care by facilitating patients to monitor and manage their health information remotely. The device allows healthcare providers to access a variety of patient data, including vital signs, weight, diet, sleep, activity, and medication adherence. It also provides two-way communication between healthcare providers and patients, allowing for more personalized care. Johnson & Johnson has built on its consumer health business that “helps >1.2bn people” and, in August 2019, launched its CarePath Solutions platform to provide patients with personalized health plans and support in their homes. It also helps healthcare providers to make informed clinical decisions, reduce costs, and improve patient outcomes.
 
Takeaways
 
The commercial success that digital pure plays and giant healthcare corporations have gained by providing solutions and services for patients in their homes should raise alarm bells for traditional MedTechs that continue to focus on providing legacy physical devices for episodic surgical interventions in hospitals. Patient centric health, emphasizing convenience and accessibility, shifts the focus of healthcare from the hospital to the home, from physical devices to digital solutions and services. To take advantage of this shift companies will need to invest in developing new digital health innovations. Patient centric healthcare also emphasizes the need for data-driven decision making, which requires the use of more advanced analytics and AI, ML big data strategies. Traditional MedTechs producing physical devices may not be able to keep up with the rapid pace of software developments in healthcare. Pivoting to develop and market software health solutions and services for patients to use in their homes might be a “bridge too far” for these companies. However, can traditional MedTechs afford not to cross this bridge?
view in full page
  • The core business of medical technology companies (MedTechs) has been manufacturing and marketing physical devices
  • Physical devices will continue to be a substantial part of their business, but on their own, are unlikely to deliver high growth rates, which are more likely to come from artificial intelligence (AI) data driven strategies that improve patient outcomes
 
The impact of big data, artificial intelligence, and machine learning on the medical technology industry
 
James Carville, an American strategist, who played a leading role in Bill Clinton winning the 1992 presidential race, insisted that the campaign focus on the economy and coined the phrase “It’s the economy, stupid”. If Carville was asked today for a winning long-term growth strategy for medical technology companies, might he say, “It’s big data, stupid”?
 
This Commentary suggests that while physical products have been the backbone of MedTech companies in the past, they are unlikely to contribute significantly to future growth rates, which are more likely to come from artificial intelligence (AI) driven big data innovations, which create new solutions that improve patient journeys and outcomes.
 
In this Commentary
 
This Commentary describes the meaning of ‘big data’ in a healthcare context, explains ‘the data universe’ and stresses not only its immense volume, but also its variety, and the phenomenal speed at which the data universe is growing. Today, most industries leverage big data and AI techniques to create innovative offerings that drive growth and enhance competitive advantage. However, with few exceptions, traditional MedTechs have been relatively slow to collect and analyse a wide range of health, medical and lifestyle data which have the potential to provide innovative software offerings that improve patients’ therapeutic journeys and complement physical products. This is partly because the industry must adhere to strict regulations and partly because many medical technology companies lack the necessary capabilities and mindsets to collect and leverage big data. Most have business models that tweak legacy physical products and accept growth rates of ~5% as the ‘new normal’. We provide a brief history of big data and AI business strategies mainly to underline that these are relatively new. It was only in the early 2000s that electronic health records (EHR) began to replace paper-based patient records, which were stored in numerous filing cabinets in healthcare silos. It was not until ~2015 that EHRs became standard practice and researchers started to apply algorithms to EHRs and other data to detect patterns and make predictions that could improve diagnoses and treatments, enhance patient outcomes, and reduce healthcare costs. The increased use of big data and AI techniques in healthcare raises important cybersecurity concerns and trust issues because health professionals and patients do not understand how algorithms arrive at their conclusions and actions. Cybersecurity concerns are addresses by a range of encryption techniques and security protocols. Trust in algorithms has been helped by the development of  ‘explainable AI’, which is software that describes the essence of algorithms in easily understood terms. However, more work is still needed in these two areas. We introduce cloud and cloud services together with an explanation why these have experienced such rapid growth across all industries in recent years. The cloud makes it easier to store and access big data via the internet from anywhere in the world. Cloud services provide security for big data as well as a range of management and analytical tools that help to transform data into revenue generating software offerings. For MedTech companies, the cloud and cloud services provide the basis for more efficacious R&D. The medical technology industry has become bifurcated between companies that leverage AI driven big data strategies to enhance growth rates and those that predominantly focus on legacy physical product offerings and settle for lower growth rates. Over the past decade the nature of the medical technology industry has changed; partly because of AI big data strategies supported by the cloud computing and a large and rapidly growing range of open-source, easy-to-use AI tools. This has given small companies a competitive advantage. The Commentary concludes by describing a few of these small MedTechs with disruptive digital products that target large, rapidly growing, underserved market segments.       
 
Big data and healthcare

Big data are comprised of a wide range of information collected from multiple sources that surpasses the traditionally used amount of storage, processing, and analytical power and is unmanageable using conventional software tools. In healthcare settings, big data include hospital records, medical records of patients, results of medical examinations, and data generated by traditional medical devices as well as various biomedical and healthcare tools such as genomics, wearable biometric sensors, and smartphone apps. Biomedical research also generates data relevant for the medical technology industry.
 
The data universe

The massive amount of data, which is generated from the entirety of the internet is referred to as the ‘data universe’. It is not only its volume that makes this special, but it is also the variety of the data and the phenomenal speed at which the universe is growing. The International Data Corporation (IDC) estimated that the data universe grew from ~130 exabytes in 2005 to >40,000 exabytes in 2020.  To put this in perspective: 1 gigabyte of data is 1bn bytes (18 zeros after the 1 or 230 bytes), and 1 exabyte is equal to 1bn gigabytes.
Data generated healthcare innovations

In the past, collecting and interpreting vast quantities of data was not feasible, partly because computer systems were relatively small and did not generate much data, and partly because technologies to manage big data were underdeveloped. Fast forward to the present, and businesses across most industries now generate enormous amounts of data. Organizations apply AI and machine learning (ML) techniques to these data to create innovative product offerings to access new revenue streams with significant growth potential. Such technologies, combined with health-related big data, can positively impact the medical technology industry by generating novel diagnostics and treatments for patients, streamlining the process of medical record keeping and developing more personalized and responsive care plans that improve patient journeys and outcomes.

You might also like: 
 
The new rapidly evolving AI data driven healthcare ecosystem

Despite the potential commercial advantages of AI data driven diagnostic and therapeutic solutions, many traditional MedTechs have been slow to collect health and lifestyle data from multiple sources to develop software offerings, which complement their legacy physical products. One notable exception is Philips Healthcare. In the early 2000s, the company was challenged by new entrants to the market who were successfully leveraging information from health wearables and other sources to create and market AI data driven offerings. At the 2016 annual conference of the American Healthcare Information and Management Systems Society (HIMSS) in Chicago, Jeroen Tas, a Philips executive, said, “We are in the midst of one of the most challenging times in healthcare history, facing growing and aging populations, the rise of chronic diseases, global resource constraints, and the transition to value-based care. These challenges demand connected health IT solutions that integrate, collect, combine, and deliver quality data for actionable insights to help improve patient outcomes, reduce costs, and improve access to quality care”.
 
Philips had the mindset and resources to respond positively to this rapidly changing ecosystem. In 2017 the company appointed Tas as its Chief Innovation & Strategy Officer, tasked with launching a suite of big data AI driven solutions, the IntelliVue® patient monitors, which support the growing demands of health professionals to provide quality care and improved outcomes for an expanding population of older, sicker patients with fewer resources. These monitoring solutions seamlessly connect big data, AI technology and patients to support health professionals to manage patients as they transition through their care journeys. In 2016, Philips and Masimo, a medical technology company specializing in non-invasive AI data driven patient monitoring devices, entered a multi-year business partnership involving both companies’ innovations in patient monitoring. Philips agreed to integrate Masimo's measurement technologies into its IntelliVue® monitors, to help clinicians assess patients’ cerebral oximetry and ventilation status. The outcome of the collaboration was the launch of a new suite of patient solutions, called Connected Care, which give healthcare providers the ability to monitor patients more effectively and reduce costs.
 
The bifurcation of the MedTech market

In addition to large MedTechs such as Philips and Masimo, there are hundreds of small companies developing AI driven big data offerings aimed at improving patient outcomes. The reasons for many traditional companies’ slowness to fully leverage big data and AI applications are partly because medical devices are required to comply with stringent regulatory guidelines and partly because of the lack of capabilities. The different responses have bifurcated the industry. On the one hand there are traditional MedTechs, which predominantly focus on existing customers and market legacy physical offerings in slow growing markets. On the other hand, there are many small companies and a few very large medical technology corporations, which have embraced AI driven big data patient-centric solutions.
 
A brief history

Big data has its genesis in the 1950s and 1960s when scientists and mathematicians began exploring the possibility of using computers to process large amounts of data to make intelligent decisions. This led to the development of technologies such as the first neural networks, which laid the foundation for modern Deep Learning. In the 1980s, researchers at IBM popularized the concept of big data to describe the process of collecting and analyzing large amounts of data, which empowered organizations to gain insights from information that previously was too complex to process. The 1990s saw the development of AI and ML, which enabled computers to learn from data and make decisions without the need for explicit programming. By the early 2000s, AI-based algorithms empowered machines to learn from data and make predictions. Many organizations, across a range of industries, saw the commercial opportunities of this and acquired capabilities to collect, store and analyse large amounts of information to identify patterns and trends that were previously impossible to detect.  Without large amounts of data, AI and ML techniques are less effective, which is significant for healthcare and the medical technology industry.
 
Big data in healthcare

AI driven big data strategies are becoming increasingly important in healthcare. This is because AI techniques applied to masses of health-related information can improve patient care, enable more effective decision-making, reduce costs, identify new treatments, explore new markets, and create more efficient healthcare systems. Further, such applications can provide more accurate and timely diagnoses, as well as insights into how various treatments affect different people. As increasing amounts of health information become available, and data handling techniques improve, so traditional MedTech companies will have opportunities to boost their growth by complementing their physical devices and volume-based care with digital assets and personalised care.
 
Paper-based mindset

Until recently health professionals were responsible for most of the different types of data associated with a patient’s treatment journey, which included medical histories, known allergies, medical and clinical narratives, images, laboratory examinations, and other private and personal information. Until the early 2000s these data were recorded on paper and stored in filing cabinets across numerous healthcare departments. It was not until 2003 that the US Institute of Medicine used the term ‘electronic health records(EHR). By 2008, only ~10% of US hospitals were using EHRs, which increased to ~80% by 2015. As EHRs became standard practice across multiple providers and data interoperability issues were resolved, the provision of healthcare improved, and medical errors and healthcare costs were reduced. Currently, the American National Institutes of Health (NIH) is inviting 1m people from diverse backgrounds across the US to help build a comprehensive big data set, which can be used to learn more about how biology, environment and lifestyles affect health in the expectation of discovering new ways to treat and prevent disease.
 
Trust and medical algorithms
 
As AI driven big data applications have increased, so trust in algorithms has been raised as an issue. This has been a major concern in healthcare. To address this challenge, explainable AI, has been developed. This is an AI technology that explains decisions and actions made by algorithms in a way that is easily understood by health professionals and patients. Explainable AI has helped to create trust in algorithms by providing a level of transparency, understanding and accountability. Further, incorporating feedback from medical professionals, patients, and other stakeholders into the development of medical algorithms has also helped to build trust. However, this entails collecting a wider variety of data than many healthcare companies are used to.
You might also like:

Can elephants be taught to dance?




Have diversified medical technology companies blown their competitive advantage?
Big data healthcare strategies and security
 
With the increasing number of big data and AI healthcare solutions, cybersecurity has become a concern. Reducing this involves using technologies such as data encryption, secure cloud computing (see below), and authorization protocols to protect data stored in large databases. Additionally, organizations may use AI-driven applications to monitor their systems to find anomalies, detect malicious activity and unauthorized access to sensitive, personal information. To ensure the security of healthcare data, organizations also employ measures such as risk assessments, incident response plans, and regular security training of their staff.
Cloud storage and services

Since the early 1990s, big data have benefitted from cloud storage, which makes it easier to store and access data over the internet and helps businesses to become more efficient and productive. It also offers organizations scalability, more control over their data and reduced costs. Organizations can: (i) easily increase their storage capacity as their data needs grow, (ii) access their data from anywhere in the world, and (iii) stop investing in expensive local storage devices. Further, cloud storage is becoming more secure, with encryption and other security measures making it safer to store data.
 
Companies moving their data from local storage devices to the cloud is more than just a simple transfer process and can be a complex, multi-year journey. Any organization that has accumulated several legacy databases and infrastructures will have to develop and manage a hybrid architecture to transfer the data. However, once in place and shared among stakeholders, cloud-based platforms can assist in unlocking clinical and operational insights at scale while speeding up innovation cycles for continuous value delivery. In combination with a secure and interoperable network of connections to hospital systems, cloud-based solutions represent an opportunity for healthcare leaders to unlock the value of data generated along the entire patient journey, from the hospital to the home. By turning data into insights at scale, it is possible to empower healthcare professionals by helping them to deliver personalized care, improved patient outcomes and lower costs.
 
The cloud also offers an increasing number of computing services. These are provided by companies such as Amazon Web Services, Google Cloud Platform, Microsoft Azure, IBM Cloud, Oracle Cloud, and Rackspace Cloud. The services include: (i) Infrastructure-as-a-Service (IaaS), which provides users with access to networks, storage, and computing resources, (ii) Platform-as-a-Service (PaaS) helps users to develop, run, and control applications without the need to manage infrastructure, (iii) Software-as-a-Service (SaaS), provides access to a variety of applications, (iv) Data-as-a-Service (DBaaS), gives users access to several types of databases, and (v) Serverless Computing enables users to run code without needing to provision or manage servers. Such services are expected to continue growing and help to transform healthcare. The provision of cloud computing services in healthcare makes medical record-sharing easier and safer, automates backend operations and facilitates the creation and maintenance of telehealth apps. The increasing use of data and cloud services by MedTech companies helps to break down data silos and develop evidence-based personalized solutions for a connected patient journey. In 2020, the healthcare cloud computing market was valued at ~US$24bn, and it is expected to reach ~US$52bn by 2026, registering a CAGR of >14% during the forecast period. Major drivers of cloud services include the increasing significance of AI driven big data applications.
 
Changes the nature of R&D

Further, the cloud can change and speed up R&D. The starting point for MedTech R&D should be evolving patient needs and affordability. Healthcare-compliant cloud platforms offer a flexible foundation for the rapid development and testing of AI driven big data solutions created by cross functional teams working across an entire life cycle of an application: from development and testing to deployment. This changes medical technology companies’ traditional approach to R&D by transforming it into short cycles undertaken by multiple stakeholders. This modus operandi is replacing traditional lengthy and expensive R&D often carried out in an organisational silo and constrained by annual budgeting cycles. This often means that a significant length of time passes before an innovation gets into the hands of health professionals and patients for testing. Digital health solutions, on the other hand, can be tested by physicians and patients early in their development and improved features quickly added.   
 
Free and easy to use AI and ML software libraries

In the early 2000s, when AI and ML were in their infancy, companies needed data engineers with advanced mathematical capabilities to build complex AI systems. Today, this is unnecessary because of the development of simplified AI and ML libraries such as PyTorch and Tensorflow. These are free, easy to use, open-source, scalable AI, and ML packages, which reduce the need for data engineers to have advanced mathematical skills to build effective software health solutions. PyTorch, released in 2016,  was developed by Facebook and then Meta AI, and is now part of the Linux Foundation. The technology is known for its ease of use and flexibility, making it favoured by developers who want to rapidly prototype and experiment with new ideas. Its tools support graphics processing, which is popular with deep learning medical imaging strategies that involve training large, complex models on big data. TensorFlow was developed by the Google Brain team and originally released in 2015 for internal use.  It is a highly scalable library for numerical computations and allows its users to build, train and deploy large-scale ML models. Both platforms have become significant open-source tools for AI and ML due to their ability to support the development and training of complex models on large datasets. They have been widely adopted by researchers and developers throughout the world and are regularly used in a variety of applications relevant to the medical technology industry. Significantly, they give smaller MedTechs a competitive advantage. 
 
Disruptive effects of AI driven big data strategies

The development and availability of big data and predictive AI help small medical technology companies enter markets, grow, and strengthen their competitive positions, which has the potential to change market dynamics. Over the past decade, several large medical technology companies have experienced their markets dented by small companies, which have successfully used open-source AI applications to leverage big data. For example, Philips Healthcare’s market was affected by the emergence of innovative offerings developed by new entrants using cloud computing services and big data from medical wearables. Above we described how Philips robustly responded to this and became a market leader in AI data-driven patient monitoring technology. Siemens Healthineers’ market share suffered from small MedTechs with innovative AI driven offerings. Further, the rise of digital imaging technology caused GE Healthcare’s market share to shrink. These vast companies have since developed AI driven big data strategies and bounced back. However, traditional MedTechs that fail to leverage big data and AI capabilities risk being left behind in an increasingly competitive digitalized industry.
 
Small MedTechs using big data and AI

Examples of small MedTechs that leverage big data, AI, and ML techniques to capture share of large underserved fast-growing market segments include Brainomix, which was spun out of Oxford University, UK, in 2010 and serves the stroke market. Iradys, a French start-up specialising in interventional neuroradiology. Elucid, a Boston, US-based MedTech founded in 2013, which has developed innovative technology that supports the clinical adoption of coronary computed tomography angiography, and Orpyx Medical Technologies, a Canadian company that provides sensory insoles for people living with diabetes. These are just a few examples of small agile companies that collectively have helped to bifurcate and disrupt segments of the medical technology industry by developing offerings predicated upon big data, AI and ML that deliver faster, more accurate diagnoses to ensure that patients get the treatment they need, when they need it.

Brainomex’s lead product offering is a CE-marked e-Stroke platform, which has been developed using data from images sourced across 27 countries including the UK, Germany, Spain, Italy, and the US and provides fast, effective and accurate analysis of brain scans that expedite treatment decisions for stroke patients. The platform has been adopted across multiple healthcare systems throughout the world, and for the past two years, England’s National Health Service (NHS) has been using the technology on suspected stroke patients. Early-stage analysis of the technology predicated on >110,000 patients suggests that eStroke can reduce the time between presenting with a stroke and treatment by ~1 hour and is associated with a tripling in the number of stroke patients recovering with no or only slight disability - defined as achieving functional independence - from 16% to 49%. With this disease, time is of the essence because after a stroke, each minute that passes without treatment leads to the death of ~2m neurons (nerve cells in the brain), which cause permanent damage. It can be challenging for health professionals to determine whether stroke patients need an operation or drugs, because the interpretation of brain scans is complicated and specialist doctors are required. Sajid Alam, stroke consultant at a large regional hospital in the UK, (Ipswich Hospital), reflected: “As a district general hospital, we don’t have ready access to dedicated neuroradiologists to interpret every stroke scan. Having Brainomix’s AI software gives us more confidence when interpreting each scan.

Intradys is a French start-up, which develops algorithms that combine ML and mixed reality to empower interventional neuroradiologists and help them enhance the care of stroke patients. Orpyx Medical Technologies provides sensory insoles for people living with diabetes who have developed peripheral neuropathy to help prevent foot ulcers. The insoles collect data on pressure, temperature, and steps and give feedback to the wearer and healthcare professionals. Elucid is a Boston-based MedTech founded in 2013. The company’s offerings are predicated on big data, AI, and ML to provide fast and precise treatments that improve the outcomes of patients with cardiovascular disease and reduce healthcare costs. Heart attack and stroke are primarily caused by unstable, non-obstructive plaque (the buildup of fats, cholesterol, and other substances in and on the artery walls) that often goes undiagnosed and untreated. Current non-invasive testing cannot visualize the biology deep inside artery walls where heart disease develops. Elucid’s lead offering is an FDA-Cleared and CE-marked non-invasive software to quantify atherosclerotic plaque.
 
Takeaways
 
The potential benefits for medical technology companies that leverage AI driven big data strategies include: (i) improved diagnoses and treatments, (ii) enhanced patient journeys and outcomes, (iii) cost savings, (iv) a better understanding of stakeholders’ needs, (v) superior decision-making, (vi) more effective products and services, and (vii) increased competitive advantage. Big data strategies may also be used to uncover insights from large datasets to develop predictive models that can automate repetitive tasks, optimize care processes, free up resources for healthcare professionals to focus on providing care, and staying ahead of the competition by providing greater insights into customer trends and needs. Medical technology companies that do not leverage AI driven big data strategies to develop innovative products for growth and competitive advantage potentially risk: (i) falling behind the competition in terms of product innovation, (ii) missing out on key market opportunities, as data-driven insights can help identify new trends and customer needs, (iii) struggling to keep up with the changing pace of technological change, as staying ahead of the competition requires a deep understanding of the latest developments in data-driven product development and (iv) losing the trust of customers, as they may be wary of MedTechs that do not use advanced technologies to develop their product offerings. Future significant growth for medical technology companies is more likely than not to come from AI driven big data strategies. Start collecting data.
view in full page
  • After decades of high growth and high valuations, large diversified medical technology companies (MedTechs) are faced with low growth and challenged to create long-term value
  • This is partly due to exogenous macroeconomic conditions and partly due to companies themselves eschewing broader strategic considerations and focussing on short-term performance
  • MedTechs’ past period of stellar performance benefited from company concentrations in large rapidly growing wealthy markets and benign fee-for-service business models that rewarded volume
  • During this time, large diversified MedTechs engaged in weak competition at a level of health plans, payers, and hospitals - an institutional level - and ignored competition at a patient level
  • Creating long-term future value for all stakeholders will require companies to compete at a patient level and accelerate the adoption of value-based care programmes that remunerate patient outcomes
  • To compete effectively at such a level requires vast amounts of patient data and sophisticated data handling and security capabilities, which many companies do not have
  • MedTechs that respond efficaciously to the rapidly evolving healthcare ecosystem and develop data and competences to compete at a patient level will have opportunities to create future long-term value  
  • Companies that continue with the status quo are likely to struggle to create long-term value and shall become acquisition targets
 
Have diversified medical technology companies blown their competitive advantage?
 
 
In the current fiscally constrained healthcare environment, creating long term value for medical technology companies (MedTechs) is challenging and many industry leaders have accepted ~5% annual revenue growth rate as the “new normal”. It has not always been like this. Between ~1990 and the late 2010s, medium and large diversified MedTechs were high growth, high value enterprises, which benefited from weak competition, large and rapidly growing underserved wealthy markets, barriers to entry, advancing medical technologies and benign fee-for-service business models that rewarded volume.
 
MedTechs’ recent decline in enterprise growth rates is partly due to worsening macroeconomic conditions, but a big part is due to companies themselves. Many became trapped in an outdated, narrow approach to creating value where a significant proportion of scarce corporate resources are focused on optimizing short-term financial performance. Albeit essential, this often meant that unmet market needs, and broader long-term strategic influences tended to be overlooked. We explore how this happened and what can be done about it.
 
In this Commentary

This Commentary describes how after ~3 decades of stellar growth many medium to large diversified medical technology companies (MedTechs) have become trapped in short-term performance-oriented cultures and struggle to create long-term value for all stakeholders. During their stellar years these companies operated at the level of payers, health plans and hospitals - an institutional level - where competition was, at best, weak, and patients’ therapeutic pathways largely ignored. Today, many diversified MedTechs struggle to create long-term value in the face of low growth rates, fiscal and regulatory constraints, vast and escalating healthcare costs, and increasing competition from giant tech companies and innovative start-ups. Further headwinds come from payers shifting away from benign fee-for-service payment models that reward volume to value-based care, which remunerates patient outcomes. To create long-term value MedTechs will need to radically change their strategies and business models. This will entail replacing legacy technology systems that hinder efficiency and innovation, tightening their security risks and improving their business process flows. If corporations do this efficaciously, they will be positioned to compete at a patient level where value is created and destroyed. However, competing at this level requires vast amounts of patient data and sophisticated data handling capabilities. Many companies neither have such data nor the capabilities to analyse and manage them. It seems reasonable to suggest therefore that, in the near- to medium-term, MedTechs that eschew retooling and competing at a patient level will struggle to create long-term value and likely become acquisition targets.
 
Structural challenges

As populations in wealthy economies age and shrink, due to increasing longevity and declining fertility, so healthcare headwinds increase and challenge MedTechs. Consider the US, which is an exemplar of most wealthy nations. Today, >56m Americans are ≥65, which accounts for ~17% of the nation's population. By 2030, when the last of the baby boomer generation ages into older adulthood, it is projected there will be >73m older adults, which means  >1 in 5 Americans will be of retirement age. As the American population ages a growing number of people present with age-related chronic conditions, which are costly to treat. Today, in the US, ~86% of people ≥65 is living with a chronic disease. This increases the risk of insuring the average US citizen, and the higher the risk, the higher the cost of annual health insurance premiums. According to the Centers for Medicare & Medicaid Services, in 2020, the US national health expenditure (NHE) grew ~10% to ~US$4trn, which equates to ~US$12,530 per person, and ~20% of the nation’s Gross Domestic Product (GDP). By 2030, US NHE is expected to reach ~US$7trn.
 
In 2020, Medicare spending rose by 3.5% to ~US$830bn or ~20% of total NHE. In the same year, Medicaid spending grew by 9% to ~US$671bn, or ~16% of total NHE. The largest shares of America’s total health spending are provided by the federal government (~36%) and households (~26%).  The private business share accounts for ~17%, local state governments account for ~14%, and other private revenues account for ~6.5%. According to the 2022 annual Kaiser Family Foundation (KFF) healthcare survey the average insurance premium for family healthcare coverage in the US increased 20% over the previous 5 years and 43% over the past decade. The average premiums for employer-sponsored health insurance are US$7,911 for single coverage and US$22,463 for family coverage.
 
Such changes are forcing the medical technology industry to adjust what products and services it develops and how value is created.
 
Stellar growth and short-term performance

During ~3 decades before ~2015, the medical device industry benefitted from unmet clinical needs, significant barriers to entry, technological advances, benign fee-for-service payment systems that reimbursed volume and industry concentrations. During this time MedTechs enjoyed stellar growth, and high valuations. Investors prioritized revenues over profit and cash flow, which encouraged enterprises to engage in portfolio moves: M&A, divestitures, and spin-offs. This had the advantage of helping companies to exit low-growth businesses and enter higher-growth segments, without engaging in years of uncertain and expensive R&D. It had the disadvantage of encouraging short-term performance rather than long-term value creation. During this period many senior leadership teams became weighed down with the demands of quarterly reporting and grew accustomed to using a variety of short-term accounting measures and ratios as their principal means to drive business and reward executives.
 
As a result, ‘successful’ medical technology companies had high growth rates but a deficit in ideas to unlock transformative new treatments for underserved patients and plans to seize opportunities presented by technological advances. The industry’s indifference to develop and leverage digitalization is indicative of corporations overlooking broader strategic influences and unmet market needs. Consequently, by ~2015, many large diversified MedTechs had fragmented technology systems that hindered efficiency and innovation and were overburdened by legacy products overexposed in slow growth markets. This made them ill-equipped to either respond quickly to innovative trends or compete with disrupters. According to a McKinsey & Company report published in June 2022, “84% of CEOs believe that innovation is critical to growth, but only 6% are satisfied with their company’s innovation performance”. To survive and stand a chance to create long-term value MedTech functions from R&D to sales will need to change.
Slow response to market changes

As MedTechs’ performance slowed and executives accepted ~5% growth as the “new normal”, markets continued to evolve: consumer-centred healthcare increased, clinical procedures moved out of hospitals into daycare centres and homes, regulation tightened, international markets expanded, medical technology continued to advance at pace, and tech giants and new entrants disrupted healthcare markets with innovative solutions and digital platforms that served patients rather than surgeons and hospitals. Because of MedTech companies’ lack of preparedness to respond positively to such changes, many doubled down on their traditional business models. This meant their M&A ecosystems were kept intact and active, and R&D continued with incremental additions to legacy products that mostly served the needs of surgeons and hospitals rather than patients.
You might also like: 

Should MedTechs follow surgeons or patients?


 
According to the Center for Studying Health System Change, the prominent trend of M&A in America’s healthcare industry increased consolidation and decreased competition, which is critical for lowering costs and improving productivity and innovation. With weak competition providers and insurers were able to drive up their prices unopposed. Findings of a study published in the American Journal of Managed Care found that hospitals in concentrated markets could charge considerably higher prices for the same procedures offered by hospitals in competitive markets. Although price increases often exceeded 20% when mergers occurred, studies suggest such increases neither improved healthcare quality nor patient outcomes.
 
With MedTechs focussed on consolidations and increasing the prices of their legacy offerings as a way of maintaining and increasing their revenue growth rates, many failed to keep current with the accelerating pace of technologies that were transforming healthcare. For example, over the three decades of stellar growth in the medical device industry, digitalization improved customer experience, connected devices, integrated, and leveraged external data sources and patients’ electronic health records, and connected with other stakeholders. This changed the way patients were diagnosed and treated, changed the way healthcare professionals communicated and collaborated, and changed how biomedical research was conducted. Notwithstanding, MedTechs were reluctant to digitize and continued to employ outdated labour-intensive business processes to market their product offerings. Today, providers, payers and patients are increasingly demanding digital solutions that are easier to use and more cost effective. This presents a challenge for traditional medical technology companies slow to adapt their business models to meet the needs of changing market conditions.  

 
The impact of Covid-19

The medical technology industry, along with many others, was adversely impacted by the Covid-19 crisis. In 2020, most medium to large MedTechs saw their revenues drop significantly. During lockdowns many experienced reductions in sales mobility, changed purchase demand profiles, supply chain disruptions, and increased risk aversion towards unnecessary spending. Such headwinds prompted some companies to re-evaluate their business models and set new directions for future success. This included digitally enhancing existing products, unlocking customers in new geographies, and monetizing data from existing devices to create new patient-centred solutions. Notwithstanding, today many MedTechs with reduced growth rates struggle to create long-term value for all their stakeholders.
 
There is no single answer to how value might be achieved as strategies will vary depending on specific industry segments and specific product offerings. However, some general suggestions include: (i) continue portfolio moves to divest low growth legacy products and reduce risk pathways to innovative offerings and growth. Target acquisitions with healthy growth prospects, well-stocked innovation pipelines and product offerings positioned to benefit from leveraging larger company infrastructures,  (ii) establish a pro-active venture function aimed at early-stage companies with disruptive offerings, (iii) invest in R&D to create new products and services that enhance patients’ therapeutic journeys, (iv) look beyond core devices and increase digital offerings and capabilities as software and digital solutions have become an essential part of patient journeys and clinical practice, (iv) shift away from volume-based care and accelerate value-based care to improve patient outcomes and reduce costs.
 
Value-based care

Healthcare experts have suggested that the fee-for-service healthcare payment model is wasteful, outmoded and partly responsible for US healthcare spending being significantly higher than other Western nations, but with patient outcomes no better and often worse. During the past two decades health plans, payers, employers, and patients have been requesting that healthcare systems deliver on value. The market responded to this with a shift towards value-based care, which instead of rewarding volume, pays providers based on patient-centric health outcomes. According to America’s Health Care Payment Learning & Action Network’s (LAN) annual survey; >60% of US healthcare payments in 2020 included some form of value component, which is up from ~53% in 2017 and ~11% in 2012. Similarly, 49% of primary care practices responding to the American Academy of Family Physicians (AAFP) 2022 Value-Based Care Survey said they are participating in some form of value-based payment, and 18% are developing the capabilities to do so.

Much of the energy for value-based care comes from America’s Affordable Care Act (ACA), (“Obamacare”), which is the most significant regulatory overhaul and expansion of healthcare coverage since the enactment of Medicare and Medicaid in 1965. The 2010 Act was originally developed to help reduce the rate of hospitalizations and readmissions by focussing on quality outcomes rather than quantity of patient visits. Value-based healthcare concepts have grown, and the ACA has created new incentives and penalties designed to encourage providers to deliver higher quality care at lower costs. These include the Hospital Value-Based Purchasing Program, which ties Medicare reimbursement to hospital performance on a set of quality measures, and the Medicare Shared Savings Program, which rewards provider groups for achieving cost savings while meeting agreed quality targets. The Centers for Medicare & Medicaid Services (CMS) supports value-based care as part of its “larger quality strategy to reform how health care is delivered and paid for”.
Omar Ishrak and value-based care
 
Omar Ishrak, CEO and chairperson of Medtronic plc  between 2011 and 2020, championed value-based care by incentivizing and leading discussions about how MedTechs should align value and price and how suppliers should get paid according to patient outcomes. He believed “[clinical] value has to be tied to economic value, otherwise people will not be able to afford the care we provide”. Before joining Medtronic, Omar Ishrak was the head of GE HealthCare and was well-versed in global politico-economic challenges associated with markets with a deep understanding of the human toll that comes from inadequate healthcare systems. “We live in a world where we get paid for our technology with a promise to improve outcomes, not a guarantee, a promise”, said Ishrak. While at Medtronic he extended value-based healthcare by insisting that efficacy is aligned with patient expectations and MedTechs get paid for medical outcomes rather than medical devices. He was convinced that value-based care incentivises MedTechs to develop and deploy products, services, and solutions, which improve patient outcomes per dollar spent, and measure value in terms of long-term patient outcomes rather than short-term transactions.

In 2016 Medtronic established a value-based care partnership with UnitedHealthcare, an American multinational managed healthcare and insurance company, which gave its customers living with diabetes access to Medtronic’s insulin pump and support services. After the first year, the partnership reported ~27% decline in the rate of preventable hospital admissions compared to patients using traditional daily insulin injections. Between 2015 and 2018, UnitedHealthcare's payments to physicians and hospitals tied to value-based care programmes were reported to be ~US$65bn and projected to grow to ~US$75bn within two years.

In February 2018, Medtronic signed a 5-year value-based care partnership with Lehigh Valley Health Network, (LVHN) based in Allentown, Pennsylvania. The two organizations established processes to treat more than 70 medical conditions using Medtronic devices to improve patient outcomes and cut costs. The endeavour reached ~0.5m patients in Northeast Pennsylvania and cut the cost of care by ~US$100m. Another benefit of the partnership was Medtronic obtained access to thousands of patient insights to their products, which the company used to establish baselines to monitor and improve outcomes. Another example of Medtronic linking a product directly to outcomes is its Tyrx Absorbable Antibacterial Envelope, a mesh used to hold pacemakers and implantable cardioverter defibrillators (ICD) in a stable environment and release antimicrobial agents over a period when the chance of infection related to surgery is high. These are just a few examples of devices that Ishrak linked to value-based payment schemes, there are many others. Cumulatively they “had a real differentiating value for Medtronic”, said Ishrak.

Although manufacturers of medical devices were slow to follow Ishrak’s example, the economic slowdown has led to a heightened cost-consciousness among healthcare providers and accelerated a shift towards value-based care and a growing influence of healthcare group purchasing organizations (GPOs). This, in turn, has incentivized MedTechs to increase their M&A activity to expand their portfolios and allow them to provide high-volume, discounted product bundles. Furthermore, value-based care has moved purchasing decisions away from physicians toward hospital administrators, who are more focused on costs than devices and their features. This has resulted in a downward pricing pressure across the MedTech landscape and rendered market entry more challenging for small companies, which provides large diversified MedTechs with further potential acquisition targets.
You might also like:

Low Back Pain and the global spine industry


 
Spinal surgery and value-based care
 
A segment of the medical technology industry that looks ripe to benefit from value-based care is spinal surgery for low back pain (LBP), which is a common age-related health condition associated with degenerative spinal disorders. According to the World Health Organisation (WHO), LBP is one of the top ten global disease burdens and ~80% of all individuals will experience the condition at some point in their lifetime.
In the US, ~3 in 10 adults - ~72m - currently suffer from chronic LBP.  Each year, ~0.3m people present with LBP but only ~0.7-4.5% of these will have specific identifiable causes for their condition. This is because LBP is challenging to diagnose as there is no established protocol to evaluate the condition and it may be a symptom of many different causes. Notwithstanding, American third-party payers have tended to reimburse spine surgery for LBP more than non-invasive therapies, but this is changing.  America has the highest rate of spine surgeries in the world, and each year, clinicians perform ~1.6m spinal fusions in an attempt to cure LBP. Between 2004 and 2015, the volume of spinal fusions increased by 62% and aggregate hospital costs increased ~177%, exceeding US$10bn in 2015, and averaging >US$50,000 per admission. A 1994 international comparative study found that, “the rate of back surgery in the US was at least 40% higher than in any other country and was more than five times that in England. Back surgery rates increased almost linearly with the per capita supply of orthopaedic and neurosurgeons in the US”.
 
A significant percentage of patients with LBP continue to experience pain after surgery, which is referred to as ‘failed back syndrome’ (FBS) and is characterized by an inability to return to normal activities. A study reported in the American Journal of Medicine suggests that recurrent spine surgeries do not necessarily mean success. Notwithstanding, when a primary surgery fails to cure LBP, a significant percentage of patients have further surgeries. However, with each recurrent surgery the probability of a successful outcome drops: ~50% success rate after the first repeat surgery, ~30% after the second, ~15% after the third and ~5% after the fourth.
 
Research published in theBritish Journal of Pain, suggests that the overall failure rate of lumbar spine surgeries is between ~10 and 46%. A study reported in a 1992 edition ofSpine, followed 53 patients for an average of 20 months after a spinal fusion surgery and found that only 50% reported improved outcomes. Another study, published in the journal Trials, suggests that ~40% of lumbar fusion patients experience ongoing back pain and limited function two years after surgery; and research findings published in the Asian Spine Journalfound ~5 and 36% of people who undergo a discectomy for a lumbar herniated disc saw their leg and back pain return two years after surgery.
 
Such failure rates have prompted health insurers in the US to reassess their fee-for-service payment policies.According to a New York Times article,  reimbursements for spine surgeries are becoming tighter, and “financial disincentives accomplished something that scientific evidence alone didn’t”. The  article draws on research published in the journal Spinewhich found that, “spinal fusion rates continued to soar in the US until 2012 and shortly afterwards Blue Cross of North Carolina said it would no longer pay for such surgeries”. It seems reasonable to assume that benign fee-for-service reimbursement policies are partly responsible for the increase in spine surgeries that fail to cure LBP. Following the Blue Cross decision other insurers followed, and US payers started to move away from fee-for-service models towards  reimbursing “value. This transfers the costs of over-treatment, revision surgeries and adverse clinical outcomes from payers to providers and is expected to utilize resources more efficiently. Such shifts are beginning to happen in all the major medical technology markets. For example, in Europe fiscal pressure on healthcare systems has meant rationing and/or delaying elective spine surgeries, and in Japan more spine surgery costs are being shifted to employers and patients.
 
Given the changing ecosystem in the spine market, a potential opportunity for MedTechs might be to apply machine learning AI techniques to patient data in an endeavour to determine what products and procedures are most likely to produce optimal solutions for individuals contemplating spine surgery for LBP. Assuming enough relevant data are collected, and successful algorithms developed, this process might help to reduce the high failure rates of spine surgeries for LBP, improve patient outcomes and lower healthcare costs.

 
Weak competition at the wrong level

Value-based care has the potential to: (i) improve patient outcomes by incentivising providers to focus on the quality of care, (ii) create a more efficient healthcare system by eliminating wasteful spending, (iii) improve patient satisfaction by making the healthcare system more patient-centered, (iv) make it easier for enterprises to commercialize new products and services by providing a pathway to reimbursement, and (v) provide a platform for companies to partner with other healthcare stakeholders to improve care delivery and patient outcomes.
 
However, MedTechs are not well positioned to transition expeditiously to value-based care. This is because, for decades they have benefited from a benign fee-for-service business model and participated in weak competition at an institutional level: the level of health plans, providers, and hospital groups. Competition at this level is weak and neither creates value nor benefits patients. This is because the principal actors behave as if playing 'pass the parcel', i.e. shifting costs onto one another, restricting services, stifling innovation, and hoarding information.
 
In the medical technology industry value can only be created or destroyed by competition at a patient level, but this has been absent throughout the history of the industry. Because of this deficit company costs are high and rising, services are restricted, clinical procedures overused, standards of care often fail to adhere to clinical guidelines, diagnosis errors are common, quality and cost differences persist across providers and geographies, best practices are slow to spread, and innovation is resisted. In most other industries such outcomes are inconceivable.
 
The future for MedTechs must be at a patient level where costs and quality persist and where competition can drive improvements in efficiency and effectiveness, reduce clinical errors and incentivize innovation. Notwithstanding, competition at this level requires devising patient outcome measures for specific devices and procedures that are acceptable to all industry stakeholders. Data are essential to develop such measures and may be provided by surveys, electronic health records, personal devices and clinical studies or a combination of all four. However, the analysis and utility of such data require sophisticated data handling and security capabilities, which many MedTechs do not have. Companies that successfully re-tool and become eloquent at competing at a patient level will be well positioned to create long-term value for all stakeholders. Companies that fail in these endeavours will likely become targets for acquisitions.
 
Takeaways

MedTech companies have become trapped by their former commercial success and legacy structures and operating models that were neither set up to respond quickly to innovative trends nor to compete with disrupters. For ~3 decades high growth rates and valuations persisted in the medical technology industry despite companies ‘competing’ weakly at the wrong level and their cultures being defined by short-term financial performance. Such entrenched business models and the time and resources they consumed did not leave room for broader in-depth strategic considerations that could influence long term value creation. Today, MedTechs are at a crossroad: they can either change their strategies and business models and compete at a patient level or they can continue their weak competition at an institutional level. The former positions companies well to create long-term value for all stakeholders while the latter does not.
view in full page

 

"When you fail to reach your goals don’t adjust your goals, adjust your actions"
 
On Saturday 20th October 2022, the Chinese Communist Party (CCP) ended its twice-a-decade Congress. It amended its charter and elected Xi Jinping for a historic third 5-year term, making him China's most powerful ruler since Mao Zedong, the founding leader of the People's Republic. Given these outcomes, followers of HealthPad suggested we re-publish the Commentary, ‘Learn from the Chinese, but don’t misjudge Beijing’, which we do below. The Commentary describes the tightening of China’s regulatory and competitive environments and suggests that Western corporations, with interests in China or thinking of entering the Chinese market, should not underestimate: (i) the large and growing differences between China and the US, and (ii) the CCP’s uncompromising ambition to become economically self-reliant, a world superpower and a global high-tech leader.

Deteriorating East-West relationships
Xi Jinping used the Congress to tighten his hold over the CCP by evicting all remnants of factional opposition, placing political allies in key positions and establishing complete control over the Party and the country. Xi re-emphasized the significance of making science and technology cornerstones of China’s strategy for national economic and military “self-reliance”. He also hinted that China will further decouple its economic links with the US and Europe and increase market restrictions on Western companies trading in China. With Xi’s increased authority and China’s increased global power and influence, it seems reasonable to assume that, in the near-term, China is likely to develop a more aggressive foreign policy, and the US and its Western allies will doubtless respond with a more confrontational approach to China. This significantly raises the possibility that East-West geopolitical relationships will deteriorate further.
 

Guanxi
China and the Chinese are different to the West and Westerners. Whereas most Western nations, have a deep sense of individualism based on democracy with social and political freedoms, China and the Chinese are rooted in Confucian collectivist principles with a top-down hierarchical structure that views individuals as part of a community with ordered and friendly relationships. This is perhaps best understood by the Chinese term, ‘Guanxi’ (关系), which refers to tacit mutual commitments, reciprocity, and trust, and is central to all personal, business, and politico-economic relationships.

China’s ambition
None of China’s renewed global posturing should surprise Western corporate leaders with their fingers on the pulse of their international strategies. For decades China has been increasing its power and influence in the world. In his 2017 report to the 19th Party Congress, Xi Jinping stressed the decline of America’s  international authority and the “substantial and rapidly growing” global power and influence of China. He predicted that, by the mid-21st century, China will have become “a global leader in terms of comprehensive national power and international influence,” and will be a development model for the world.

The past 5-years
Also in 2017, Xi advocated a more aggressive and activist Chinese foreign policy, and over the ensuring 5 years, Beijing has: (i) weakened foreign enterprises trading in China and raised the bar for new entrants, (ii) strengthened Chinese domestic companies and incentivized them to trade internationally, (iii) ratcheted-up pressure on Taiwan, (iv) exerted greater control over Hong Kong, and (v) increased China’s rhetoric and tactics in defence of its interests.
 

Business-as-usual versus strategically active
Over the past 3 decades, China has strategically invested in innovation-driven development, which has helped the nation improve its core competitiveness, and significantly shape its international leadership role. During this time, many Western companies with interests in China have been strategically passive and pursued ‘business-as-usual’ policies, which often meant they: (i) continued to invest in products and services that had been overtaken by technology and were losing market share, (ii) were relatively slow to invest in emerging technologies and develop new offerings, (ii) tended to fixate on their initial success and failed to quickly recognise that something new was replacing it, and (iii) focused scarce resources on short-term performance rather than long-term value. For many corporates, such policies resulted in missed commercial opportunities and weakened global competitiveness.
 

Reducing the healthcare gap
Over the past decades while many Western companies have been strategically passive, China, by contrast, has been strategically active, aggressively developing innovative and technologically advanced solutions to narrow its healthcare gaps caused by increased healthcare demand and shrinking numbers of healthcare professionals. Witness Chinese start-ups that rapidly grew to become significant companies by leveraging data and artificial intelligence (AI) to develop digital healthcare solutions that enhanced patient outcomes and reduced costs. Examples include: WeDoctorAlibaba HealthJD Health, DXY.cn. and Ping An Good Doctor. These, and other digital innovations, provide a range of health services including, online consultations, hospital referrals and appointments, health management, medication regimens, medical insurance, and wellness and prevention programmes. Such initiatives have provided vast numbers of Chinese citizens with easier access to healthcare and enhanced patients’ therapeutic journeys while reducing vast and escalating healthcare costs and shifted many healthcare services out hospitals into peoples’ homes.

Hospital services shifting to the home
This shift is nothing new and not exclusively Chinese. Twelve years ago, Devi Shetty, a world-renowned heart surgeon, was emphasising the impact that digitalization would have on traditional hospital based services. In just 2 decades, Shetty built Narayana Health (NH), India’s 2nd largest hospital group. In 2019, Narayana was recognised by  Fortune Magazine as, “one of the world’s most innovative healthcare providers”. In 2000, Shetty, like his Chinese counterparts, was emphasising that the “next big thing in healthcare is not going to be a magic pill, or a faster scanner, or a new operation. The next big thing in healthcare is going to be IT, which will change the way a health professional will interact with the patient. Every step of patient care will be dictated by a protocol stored on a handheld device. That will make healthcare safer for the patient and shift most hospital activities to the home. The doctor and patient can interact regardless of time and place”. See video.
 
 
Two types of capitalism
The difference between Western and Chinese corporates reflects two different types of capitalist systems: liberal meritocratic capitalism in the West, and state-led authoritarian capitalism in China. In the former, the emphasise on quarterly reporting and the time, effort and costs associated with it tends to encourage short-term performance while the latter creates more opportunities for generating long-term value. There is plenty of evidence to suggest that when executives consistently invest in long-term strategic objectives their companies’ productivity increases, they generate more shareholder value, create more jobs, and contribute to higher levels of economic growth than do comparable companies that focus on the short-term performance. Data also suggest companies that implement effective environmental, social and governance (ESG) strategies, which address the interests of all stakeholders, achieve better long-term value.

Fink criticizes business executives
In 2014, Laurence Fink, chairman of Black Rock, the world’s largest asset manager, criticized Fortune 500 CEOs for their focus on short term corporate behaviour. While recognising the market pressures on company executives, Fink said, “It concerns us that many companies have shied away from investing in the future growth of their companies” and increasingly engaged in actions that “deliver immediate returns to shareholders, such as buybacks or dividend increases, while underinvesting in innovation, skilled workforces, or essential capital expenditures necessary to sustain long-term growth”.

Takeaways
Western corporate leaders are challenged to devise ethical strategies that create long-term value rather than just short-term performance. Following Fink’s suggestions policies to create long-term value might include: (i) developing a suite of strategic initiatives expected to deliver returns that exceed the cost of capital (ii) allocating resources to initiatives that create most value, (ii) focusing on generating value not only for shareholders but for all stakeholders, and (iii) resisting actions that only boost short term profits.
 
  • China is the world’s second largest economy after the US
  • Its MedTech sector is the world’s second largest after the US and accounts for 20% of the global market
  • The size of China’s market is attractive to Western MedTechs but its regulatory and competitive environments are changing, which makes it more challenging for foreign corporations to enter or grow their franchises in China
  • China’s healthcare system has similar structural challenges as those of the US and other wealthy nations: the demand for care is increasing and overwhelming health professionals, which creates care gaps
  • China is ahead of the US and other nations in attempting to reduce such gaps with patient-centric innovative digital therapeutic solutions, which is supported by a deep bench of capabilities
  • Western MedTechs have a lot to learn from Chinese digital health innovations
  • However, Beijing is engaged in an unprecedented mission to become a self-reliant, high-tech economy and a world superpower within the not-too-distant future
  • Misjudging Beijing can have significant commercial consequences
 
Learn from the Chinese, but don’t misjudge Beijing


An earlier Commentary ended by posing the question whether Western MedTechs can compete with China’s large and rapidly growing domestic medical device industry, which benefits from China being the second largest MedTech market in the world behind the US, with annual sales revenues of ~US$84bn in 2020. China now accounts for ~20% of the global medical device market, which is expected to continue an upward trajectory, supported by the nation’s quickly aging population, rising incomes, and the continued enhancement of health services.
 
With this foundation, Beijing is incentivising its domestic MedTech companies to expand internationally. Beijing’s 14th Medical Equipment 5-Year Plan (2021–25) sets a goal to have >6 Chinese MedTechs among the top 50 global industry corporations by 2025. The policy complements Made in China 2025, which is a macroeconomic strategy to reduce China’s reliance on imported foreign products including medical devices. So, while China’s domestic market is becoming more challenging for foreign MedTechs, Beijing is supporting the growth and expansion internationally of its local medical device companies to compete with their Western counterparts. For example, Mindray Medical International, China’s biggest medical device corporation by sales revenue, is the #4 ultrasound vendor in the world and over the next 5 years, expects to increase its overseas sales revenues from <50% today to ~70%.
 
Despite Beijing’s ‘for China’ policies, many Western MedTech leaders view China as a significant commercial opportunity, recall foreign corporations that have prospered in the nation over the past two decades and suggest that it is important to do business there if one of your company’s objectives is to grow its international franchise. But China has changed, and its regulatory and competitive ecosystems are tightening, which present headwinds for Western MedTechs that were not present a decade ago. Further, China has an ambition to become a self-reliant, world leading high tech nation in the not-too-distant future, which could have consequences for foreign companies participating in the Chinese market.
 
With ~400m chronic disease patients, a fast-aging society, vast and rapidly rising healthcare costs, and an economy that has slowed, China is resolute in developing a new model of digitally enabled, patient-centred integrated healthcare. This ambition is supported by significant resources and a deep-bench of capabilities positioned to enable China to achieve its goals, which include transforming its medical devices sector by supporting the development of world class, high tech, patient-centric, digital enterprises.
 
All these factors suggests a dilemma for Western MedTech leaders: China is too big to ignore, but Beijing is too powerful and unrelenting to misjudge.

 
In this Commentary

This Commentary has 3 sections. The first, entitled ‘Reducing care gaps with digital therapeutic innovations’, suggests that China, the US, and other developed nations share a common challenge of care gaps created-by a limited supply of health professionals and a large and increasing demand for care. China’s attempts to resolve these gaps differ from other nations in their scale and nature. They are nationwide innovations predicated upon digital AI strategies, which manifest themselves in digital platforms that directly address patients’ healthcare needs. We briefly describe a few examples of these and suggest that they are advantaged by China’s data policies and AI competencies. Section 2, entitled ‘Capabilities’, describes Beijing’s plans for China to become the world’s leader in AI technologies within the next decade and suggests that China has the capabilities to achieve this goal in the proposed timeframe. The final section entitled, ‘Understanding Beijing’, briefly describes the tightened regulatory and competitive environments and suggests how this impacts the business models of Western corporations seeking to enter the Chinese market or increasing their existing franchises. We posit that China and the Chinese are significantly different to Western democracies and Westerners and emphasize the Chinese Communist Party’s uncompromising ambition to become economically self-reliant, a world superpower and a global high-tech leader. Misjudging Beijing could be commercially damaging for foreign corporations.
 
 
1: Reducing care gaps with digital therapeutic innovations
 
China has similar structural healthcare challenges to the US and other developed economies, which manifest themselves in care gaps caused by a limited supply of overworked healthcare professionals and a vast and rapidly growing demand for care from aging populations. The Chinese population ≥65 years is ~140m, and this cohort is expected to grow to ~230m by 2030. By that time, the nation’s aging middle class will have grown from today’s ~0.3bn to ~0.7bn. High-risk behaviours like smoking, sedentary lifestyles, and alcohol consumption as well as environmental factors such as air pollution take a huge toll on health and increase the demand for care. According to Statista, a large portion of the Chinese population suffer from chronic lifestyle diseases, which account for >80% of the nation’s ~10m deaths each year; >0.5bn people are overweight or obese, while high blood pressure is a common illness among >0.4bn people. China’s healthcare expenditure is growing at >8% a year, and without reform, the nation’s health spending could increase to >US$2trn by 2030. Such factors, together with the nation’s economic slowdown motivate Beijing to prioritize the transformation of its healthcare system.
Significant differences in tackling care gaps

A significant difference between China and the US and other wealthy nations, whose healthcare systems are all in need of reform, is that China has been quicker to develop digital therapeutic technologies to reduce care gaps and relieve its large and rapidly growing burden on hospitals, care systems and families caring for the sick and elderly.
You might also like: 

Should MedTechs follow surgeons or patients?

In any healthcare system, people should be the priority, but because of a dearth of health professionals, overburdened hospitals, soaring health costs and overworked physicians, patients’ needs are often not prioritized. China has been no exception but expects to reverse this trend with the help of artificial intelligence (AI) enabled digital therapeutic solutions that put patients first. Examples include: WeDoctor, Alibaba Health, JD Health, DXY.cn. and Ping An Good Doctor. These, and other digital innovations, provide a range of health services including, online consultations, hospital referrals and appointments, health management, medication regimens, medical insurance, and wellness and prevention programmes. China’s early adoption of AI medical solutions has benefitted from Beijing’s “Healthy China 2030” policy, which, since its launch in 2016, has directed substantial funds to Chinese AI start-ups developing technological innovations to ease the burden of care gaps. According to Tracxn, one of the world’s largest tracking platforms, there are ~227 AI driven healthcare start-ups in China. Let us briefly describe three established ones: WeDoctor, DXY.cn and Ping An Good Doctor.
 
WeDoctor

Tencent-backed WeDoctor, founded in 2010 to provide people with physician appointments, is based in Hangzhou, a city of ~11m and the capital of China’s Zhejiang province. Since its inception, the company has grown into a multi-functional platform offering a range of medical services predicated upon a database of >2,000 Western treatment plans, online pharmacies, health insurance, cloud-based enterprise software for hospitals and other services. Today, WeDoctor hosts >270,000 doctors and ~222m registered patients. It has an impact on reducing care gaps and is one of the few online healthcare providers qualified to accept payments from China's public health insurance system, which covers >95% of the population. WeDoctor's services are especially valued in rural areas, where there are fewer physicians than the national average of 1.5 per 1,000 people.

In response to the COVID-19 crisis the company launched the WeDoctor Global Consultation and Prevention Center (GCPC),  which provided a free 24/7 global online health enquiry service, psychological support, prevention guidelines and real-time pandemic reports. Just before the pandemic, WeDoctor planned to float its medical and health service function on the Hong Kong stock exchange at a valuation ~US$7bn. However, it was pulled because of the Beijing-Hong Kong tensions. WeDoctor’s. other business functions, which include health insurance and health data services, were not included in its proposed flotation, and are likely to stay private to appease Chinese regulators.
 
DXY.cn
 
DXY.cn is an online healthcare community for doctors, patients, and healthcare organizations. It was founded in 2000 and is also based in Hangzhou. Over the past 2 decades it has evolved into the world’s largest community of physicians who use the platform to gain insights from colleagues, discuss new medical research, and report unusual clinical events. More recently, DXY has added a consumer-facing service that brings wellbeing advice and medical consultations to the public. DXY generates revenues from public-facing medical advertising and job recruitment for its life science clients, as well as clinics where patients can receive in-person medical care. According to TechCrunch, in 2021, DXY reached ~130m consumers, >9,000 medical organizations, and had a registered user base of ~20m.
 
Ping An Good Doctor

Ping An Insurance (Group), is one of the world’s largest financial services companies with >210m retail customers and ~560m internet users and is headquartered in Shenzhen, southeastern China. In 2014, it launched Ping An Good Doctor to provide end-to-end, AI-powered health services directly to patients. These include 24/7 online consultations, diagnoses, treatment planning, second opinions, and prescription management solutions. Today, Good Doctor has ~400m registered users and drives synergies across China’s healthcare ecosystem. The platform collaborates with >3,700 hospitals and is supported by an off-line healthcare network of >2,200 in-house medical staff and ~21,000 contracted experts to ensure quality and accuracy of its medical services. The company provides insurance coverage for both users and physicians, which helps to ease China’s healthcare payment pressures. Ping An Good Doctor’s technology also assists patients to manage their personal health records, treatment plans, and medical histories.
 
In 2019, the company launched the world's first AI-powered, un-manned healthcare service: the One-minute Clinic. This is a 3m2 booth, which patients walk into, enter their digitized medical history from their mobile phones, and add their symptoms. The clinic’s algorithms, which have been trained on data from >300m medical records, then make a diagnosis, prescribe drugs, and provide a treatment plan. Medications are purchased from an adjacent vending machine. Within a year of the start of the first clinic, Good Doctor rolled out ~1,000 units in shopping malls, airports and other public spaces throughout China providing onsite medical and pharmaceutical services 24/7. Today, the clinics provide accessible and affordable medical and health services to >3m users. Good Doctor believes that its AI-driven, un-manned clinics have a promising future helping to reduce China’s care gaps and has plans to expand its services into Southeast Asia. In December 2019, the company signed a strategic collaboration with Merck, an American pharmaceutical multinational to advance further intelligent healthcare in China.

 
Internet hospitals

Digital initiatives like those described above have led to the development and spread of internet hospitals, which are online medical platforms associated with offline access to traditional hospitals that provide a variety of services directly to patients. Today, internet hospitals are booming in China, driven jointly by government and market initiatives.
 
The first internet hospital was established in China’s Guangdong province in October 2014. It consisted of four clinics operated by doctors from the Second People's Hospital, an online platform operated by a medical technology company, and a network of medical consulting facilities based in rural villages, community health centres, and large pharmacy chain stores. Initially webcams were used for patients to communicate with physicians and share medical images of their conditions. A patient's vital signs were taken by on-site machines and uploaded onto the system. With all this information, physicians made a diagnosis and prescribed medications, which patients obtained from nearby pharmacies. According to the Lancet, two months after its launch, China’s first internet hospital “was dealing with ~200 patients and issuing ~120 prescriptions every day”. After six months, the number of patients had increased to >500 a day, ~60% of whom needed prescriptions. Soon afterwards, a network of consultation sites expanded to >1,000 facilities in 21 of Guangdong’s municipalities. In 2018, Beijing gave the legislative green light for internet hospitals, which prompted many Chinese digital health companies to start using internet-based AI solutions to meet the country’s medical and healthcare needs and contribute to the reduction of care gaps. By August 2021, >1,600 internet hospitals had been established in China. The public and physician acceptance of these and Beijing’s support for them suggests a new era in digital healthcare.

 
Internet + Healthcare” initiatives

Since 2018, a range of Internet + Healthcare” initiatives have consolidated and enhanced the position of digital healthcare innovations. The success and continual improvement of China’s digital health service platforms all benefit from Beijing’s policies to facilitate medical practice supported by digital tools. Laws and policies have been issued to support this digital transformation, including health data digitalization, data sharing, and interoperability across the whole of China’s healthcare ecosystem. After the outbreak of the COVID-19 pandemic, the government increased its “Internet + Healthcare” efforts to include telemedicine in state medical insurance coverage, and to lift barriers for prescribed drugs sold online.
 
Data advantage

Compared to the US and other Western democracies, China has significant data advantages to drive its digital healthcare initiatives. Eric Topol, a cardiologist, director of the Scripps Research Translational Institute, and author of Deep Medicine: How AI can make healthcare human again, argues that “China has a massive data advantage when it comes to medical AI research”. To put this in perspective, consider that Chinese patient healthcare data are drawn from the nation’s provinces, many of which have populations of >50m. By contrast, US AI research tends to be based on patient data often drawn from one hospital. China’s big data advantage allows machine learning algorithms to be more effectively trained to perform key functions in a range of clinical settings. Another comparative advantage of China is its large workforce of AI specialist, data scientists, and IT engineers, which can work on healthcare projects at comparatively low costs. This is partly the result of China’s emphasis over the past four decades to encourage science, technology, engineering, and mathematics (STEM subjects) in their schools and universities to fuel Beijing’s technological ambitions.

Not known for good data governance practices, but with intensions to expand internationally, China is now tightening its data protection regulations. For example, in November 2021 Beijing introduced the Personal Information Protection Law (PIPL), which is designed to prevent data hacks and other nefarious uses of sensitive personal information. Much like the EU’s General Data Protection Regulation (GDPR), the PIPL stipulates that an individual’s explicit consent must be obtained before their medical health data are collected, and it places the burden on medical AI companies to ensure that these data are secure.
 
2: Capabilities
 
Healthy China 2030

In October 2016, President Xi Jinping announced the nation’s Healthy China 2030 (HC 2030) blueprint, which put patient-centred healthcare at the core of Beijing’s healthcare plans, recognizing its ability to influence both social and economic development. The policy sets out China’s long-term approach to healthcare and shows the nation’s commitment to participate in global health governance, which Beijing recognises as necessary as it seeks to extend its international reach. By 2030, Beijing aims to reach health equity by embracing the United Nations’ Social Development Goal 3.8, which seeks to “Achieve universal health coverage, including financial risk protection, access to quality essential healthcare services and access to safe, effective, quality and affordable essential medicines and vaccines for all”. In 2019, Beijing announced an action plan to accelerate the delivery of Healthy China 2030. This puts patients first in an endeavour to build a healthy society by leveraging AI technologies to reduce the prevalence of lifestyle induced chronic disorders and subsequent care gaps. The World Health Organization (WHO) believes the policy “has the potential to reap huge benefits for the rest of the world”.
 
AI capabilities
 
As China’s economy has matured, its real GDP growth has slowed, from ~14% in 2007 to ~7% in 2018, and the International Monetary Fund (IMF) projects that growth will fall to ~5.5% by 2024. Beijing refers to the nation’s slower growth as the “new normal” and acknowledges the need to embrace a new economic model, which relies less on fixed investment and exporting, and more on private consumption, services, and innovation to drive economic growth. Such reforms are needed for China to avoid hitting what economists refer to as the “middle-income trap”. This is something many Western economies (and corporations) face: it is when countries achieve a certain economic level but then begin to experience diminishing economic growth rates because they are unable to effectively upgrade their economies with more advanced technologies. To avoid this scenario, for the past three decades, China has been investing in AI and systematically upgrading its economy.


You might also like:

Leaning-in on digital and AI


 
Today, China has a significant supply of innovative AI talent to deliver a Healthy China by 2030. Some of the world’s largest technology companies are Chinese and all are developing different aspects of AI applications. For example, Alibaba’s cloud division concentrates on using AI in healthcare and Baidu, which has numerous AI research laboratories in the US, is focussed on a range of AI innovations, which include “deep learning”, and “big data”. More recently, Baidu added a Business Intelligence Lab, which develops data analytics for emerging data-intensive applications, and a Robotics and Autonomous Driving Lab, which specializes in computer vision.
In 2017 China's State Council launched a 3-step plan to become a world leader in AI technologies by 2030, with a domestic AI industry valued ~US$150bn. Beijing completed step 1 in 2020 by establishing a “new generation” of AI technologies and technocrats and developing national standards, policies, and ethics for its emerging industry. Step 2 is anticipated to be completed by 2025, by which time China expects to achieve “major breakthroughs” in AI applications that will help the completion of upgrading the nation’s industrial sector and thereby avoiding the middle-income trap. The final step is anticipated to take place between 2025 and 2030, which, among other things, will project China internationally as the world leader in AI technologies.
 
3: Understanding Beijing
 
Regulatory changes

A decade ago, foreign MedTechs operated in China with relative ease. Chinese regulations were lighter than they are today, and companies were supported by a multi-layered network of small scale and localised sub-distributors. This fragmented structure resulted in higher prices and tended to encourage corruption, but the relatively high margins obtained from foreign products allowed medical device corporations to compensate the multiple distribution levels and still make a profit. In return, domestic Chinese distributors managed the market and foreign MedTechs did not engage directly with hospitals and physicians.
 
Volume-based procurement

Recent regulatory changes have disrupted this modus operandi for foreign MedTechs. One change positioned to have a significant impact on MedTech profits is volume-based procurement (VBP). This is aimed at lowering the price of medical consumables by tendering the market volume of cities, provinces, or the country to manufacturers with the lowest price. Following a successful pilot with pharmaceuticals, VBP was extended to medical devices in 2019, and since then it has had a significant effect on certain products. For example, the price of cardio stents and hip and knee implants have been reduced by ~70% to ~90%. China’s message is clear: Medtechs are either ‘in’ with significantly lower prices, or ‘out’. This suggests that companies wishing to enter or grow their franchise in the Chinese market will have to adapt their business models by accelerating their pre-launch registrations and post-launch commercialization strategies for new products as margins on legacy offerings are expected to be substantially reduced. However, review processes for new offerings have become longer, more bureaucratic, and more expensive than they were five years ago. For example, if a Class 2 device without clinical studies took ~9 months to register five years ago, today expect ~2 years. VBP has forced foreign MedTechs to consolidate their multi-layered distribution channels to improve economies of scale. 
 
More recently Beijing has introduced a two-invoice policy for the medical devices industry: (i) MedTech to a distributor, and (ii) distributor to a hospital. This will push small and less competitive distributors out of the market and shorten and consolidate supply chains. The likely effect of this is for Chinese distributors to concentrate more on logistics to “deliver product”, rather than managing the market. To the extent that this is the case, a larger share of customer engagement will become the responsibility of MedTechs.
 
This will mean that foreign corporations trading in China will need to reassess their capabilities and adjust their business models. Further, MedTechs operating in China should expect VBP to increase the significance of “value”. This is because the policy is likely to enhance the purchasing power of hospital administrators and reduce that of physicians.  As a result, companies might expect procurement conversations to focus less on clinical outcomes and more on the overall value of products and their potential to minimize costs. Many readjustments companies will be obliged to make to their business models may be achieved by having someone local on the product management team rather than engaging high-margin agencies to resolve critical, but relatively simple domestic challenges.
 
A narrow window of opportunity for foreign MedTechs

Beijing’s “in China for China” policy makes it a condition that foreign companies entering the Chinese market must share their technology and intellectual property (IP) with a domestic “partner”. Beijing has been using this condition to acquire valuable scientific knowhow, which has helped the country to develop a large domestic medical device industry. According to a 2021 research report from Deloitte, a consulting firm, “China now boasts over 26,000 medical device manufacturers”. Beijing’s policies render China a substantially more challenging market to enter and to grow in than it was five years ago. China’s market opportunities for foreign corporations are not only getting tighter; they are getting shorter, and their orientation is changing away from surgeons towards patients. Further, Beijing is on a relentless drive towards self-reliance and tolerates the presence of Western companies in its domestic markets only for as long as they contribute offerings that are useful to the Chinese Communist Party. If China is successful in delivering on its healthcare and high-tech development plans, the window of opportunity for many foreign MedTechs could be only ~10 years.
 
China’s different

China and the Chinese are unlike the West and Westerners. When Deng Xiaoping’s started China’s reforms in 1978 and opened the nation to the world’s trading economies, he created a socialist market economy, in which private capitalists and entrepreneurs co-existed with public and collective enterprise. This formed the foundations for China’s phenomenal economic growth, prosperity, reduction of poverty, massive infrastructure investment, and development as a world-class technology innovator. As a result, many Western business leaders and politicians believed that China had abandoned ideology in a similar way that former communist regimes of Eastern Europe did in the early 1990s after the fall of the Soviet Union. However, such a transformation did not happen in China, which remains a one-party authoritarian state, tightly governed by the Chinese Communist Party (CCP), whose constitution states that China is a “people’s democratic dictatorship”. The CCP has a mission to become the world’s leading technology economy by 2030. This is backed by substantial sovereign wealth and a supply of relevant high tech human capital and an impressive history of national achievements.
 
Scale and speed of transformation

The phenomenal politico-economic progress China has made in a relatively short time is an indication of the nation’s determination, and its ability to affect change, and contextualizes Beijing’s policies to make China a self-reliant economy in the not-too-distant future. A 2022 report jointly released by China’s Development Research Center and the World Bank highlights the nation’s transformation in just four decades, from a struggling agrarian society to a global superpower. The nation’s achievements include increased health insurance coverage to >95% of its 1.4bn population, lifting ~0.8bn people out of poverty, which accounts for ~75% of global poverty reduction in the same period, a burgeoning middle class, which by 2030, will have grown from today’s ~0.3bn to ~0.7bn. In 2010, China overtook Japan to become the world's second largest economic power after the US when measured by nominal GDP. According to the World Bank, in 1960, China's GDP was ~11% of the US, and in 2019, ~67%. Not only is China the world's second-largest economy it has a permanent seat at the United Nations Security Council, modernised armed forces, and an ambitious space programme. China’s growing international clout and economic leadership positions it well to replace the US as the greatest superpower.

Such factors provide a context for Western corporation with global pretentions wishing to engage with and learn from China. At the 13th Annual National People’s Congress in March 2022, Premier Li Keqiang called for “faster breakthroughs” in key technologies, and said the government would increase the tax rebate for small and medium-sized science and technology firms from 75% to 100% and grant tax breaks for basic research to encourage innovation. Significantly, the Congress also underscored self-reliance in China’s economic priorities amid warnings of trade headwinds and geopolitical complexities.

 
Takeaways
 
China is too big a commercial opportunity to ignore. In 2021, China accounted for >18% of the global economy, rising from ~11% in 2012, its GDP was ~US$18trn, and per capita GDP reached US$12,500, which is close to the threshold for high income economies. In recent times, the contribution of China's economic growth to the world economy has been ~30%, which makes China the largest growth engine for the global economy. However, the relationship between China and the rest of the world is changing. As China becomes more self-reliant, its exposure to the world has decreased. Add to this (i) international trade disputes, (ii) increasing geopolitical tensions between the US and China, (iii) the nation’s evolving new rules to evaluate technology flows, (iv) increase of protectionism and (v) its healthcare mission to pivot towards patients, and you have significantly changed trading conditions than a decade ago. Misjudging Beijing’s rapidly evolving commercial ecosystem could be costly for Western MedTechs.
view in full page
  • China is the world’s second largest economy after the US
  • Its MedTech sector is the world’s second largest after the US and accounts for 20% of the global market
  • The size of China’s market is attractive to Western MedTechs but its regulatory and competitive environments are changing, which makes it more challenging for foreign corporations to enter or grow their franchises in China
  • China’s healthcare system has similar structural challenges as those of the US and other wealthy nations: the demand for care is increasing and overwhelming health professionals, which creates care gaps
  • China is ahead of the US and other nations in attempting to reduce such gaps with patient-centric innovative digital therapeutic solutions, which is supported by a deep bench of capabilities
  • Western MedTechs have a lot to learn from Chinese digital health innovations
  • However, Beijing is engaged in an unprecedented mission to become a self-reliant, high-tech economy and a world superpower within the not-too-distant future
  • Misjudging Beijing can have significant commercial consequences
 
Learn from the Chinese, but don’t misjudge Beijing


An earlier Commentary ended by posing the question whether Western MedTechs can compete with China’s large and rapidly growing domestic medical device industry, which benefits from China being the second largest MedTech market in the world behind the US, with annual sales revenues of ~US$84bn in 2020. China now accounts for ~20% of the global medical device market, which is expected to continue an upward trajectory, supported by the nation’s quickly aging population, rising incomes, and the continued enhancement of health services.
 
With this foundation, Beijing is incentivising its domestic MedTech companies to expand internationally. Beijing’s 14th Medical Equipment 5-Year Plan (2021–25) sets a goal to have >6 Chinese MedTechs among the top 50 global industry corporations by 2025. The policy complements Made in China 2025, which is a macroeconomic strategy to reduce China’s reliance on imported foreign products including medical devices. So, while China’s domestic market is becoming more challenging for foreign MedTechs, Beijing is supporting the growth and expansion internationally of its local medical device companies to compete with their Western counterparts. For example, Mindray Medical International, China’s biggest medical device corporation by sales revenue, is the #4 ultrasound vendor in the world and over the next 5 years, expects to increase its overseas sales revenues from <50% today to ~70%.
 
Despite Beijing’s ‘for China’ policies, many Western MedTech leaders view China as a significant commercial opportunity, recall foreign corporations that have prospered in the nation over the past two decades and suggest that it is important to do business there if one of your company’s objectives is to grow its international franchise. But China has changed, and its regulatory and competitive ecosystems are tightening, which present headwinds for Western MedTechs that were not present a decade ago. Further, China has an ambition to become a self-reliant, world leading high tech nation in the not-too-distant future, which could have consequences for foreign companies participating in the Chinese market.
 
With ~400m chronic disease patients, a fast-aging society, vast and rapidly rising healthcare costs, and an economy that has slowed, China is resolute in developing a new model of digitally enabled, patient-centred integrated healthcare. This ambition is supported by significant resources and a deep-bench of capabilities positioned to enable China to achieve its goals, which include transforming its medical devices sector by supporting the development of world class, high tech, patient-centric, digital enterprises.
 
All these factors suggests a dilemma for Western MedTech leaders: China is too big to ignore, but Beijing is too powerful and unrelenting to misjudge.

 
In this Commentary

This Commentary has 3 sections. The first, entitled ‘Reducing care gaps with digital therapeutic innovations’, suggests that China, the US, and other developed nations share a common challenge of care gaps created-by a limited supply of health professionals and a large and increasing demand for care. China’s attempts to resolve these gaps differ from other nations in their scale and nature. They are nationwide innovations predicated upon digital AI strategies, which manifest themselves in digital platforms that directly address patients’ healthcare needs. We briefly describe a few examples of these and suggest that they are advantaged by China’s data policies and AI competencies. Section 2, entitled ‘Capabilities’, describes Beijing’s plans for China to become the world’s leader in AI technologies within the next decade and suggests that China has the capabilities to achieve this goal in the proposed timeframe. The final section entitled, ‘Understanding Beijing’, briefly describes the tightened regulatory and competitive environments and suggests how this impacts the business models of Western corporations seeking to enter the Chinese market or increasing their existing franchises. We posit that China and the Chinese are significantly different to Western democracies and Westerners and emphasize the Chinese Communist Party’s uncompromising ambition to become economically self-reliant, a world superpower and a global high-tech leader. Misjudging Beijing could be commercially damaging for foreign corporations.
 
 
1: Reducing care gaps with digital therapeutic innovations
 
China has similar structural healthcare challenges to the US and other developed economies, which manifest themselves in care gaps caused by a limited supply of overworked healthcare professionals and a vast and rapidly growing demand for care from aging populations. The Chinese population ≥65 years is ~140m, and this cohort is expected to grow to ~230m by 2030. By that time, the nation’s aging middle class will have grown from today’s ~0.3bn to ~0.7bn. High-risk behaviours like smoking, sedentary lifestyles, and alcohol consumption as well as environmental factors such as air pollution take a huge toll on health and increase the demand for care. According to Statista, a large portion of the Chinese population suffer from chronic lifestyle diseases, which account for >80% of the nation’s ~10m deaths each year; >0.5bn people are overweight or obese, while high blood pressure is a common illness among >0.4bn people. China’s healthcare expenditure is growing at >8% a year, and without reform, the nation’s health spending could increase to >US$2trn by 2030. Such factors, together with the nation’s economic slowdown motivate Beijing to prioritize the transformation of its healthcare system.
Significant differences in tackling care gaps

A significant difference between China and the US and other wealthy nations, whose healthcare systems are all in need of reform, is that China has been quicker to develop digital therapeutic technologies to reduce care gaps and relieve its large and rapidly growing burden on hospitals, care systems and families caring for the sick and elderly.
You might also like: 

Should MedTechs follow surgeons or patients?

In any healthcare system, people should be the priority, but because of a dearth of health professionals, overburdened hospitals, soaring health costs and overworked physicians, patients’ needs are often not prioritized. China has been no exception but expects to reverse this trend with the help of artificial intelligence (AI) enabled digital therapeutic solutions that put patients first. Examples include: WeDoctor, Alibaba Health, JD Health, DXY.cn. and Ping An Good Doctor. These, and other digital innovations, provide a range of health services including, online consultations, hospital referrals and appointments, health management, medication regimens, medical insurance, and wellness and prevention programmes. China’s early adoption of AI medical solutions has benefitted from Beijing’s “Healthy China 2030” policy, which, since its launch in 2016, has directed substantial funds to Chinese AI start-ups developing technological innovations to ease the burden of care gaps. According to Tracxn, one of the world’s largest tracking platforms, there are ~227 AI driven healthcare start-ups in China. Let us briefly describe three established ones: WeDoctor, DXY.cn and Ping An Good Doctor.
 
WeDoctor

Tencent-backed WeDoctor, founded in 2010 to provide people with physician appointments, is based in Hangzhou, a city of ~11m and the capital of China’s Zhejiang province. Since its inception, the company has grown into a multi-functional platform offering a range of medical services predicated upon a database of >2,000 Western treatment plans, online pharmacies, health insurance, cloud-based enterprise software for hospitals and other services. Today, WeDoctor hosts >270,000 doctors and ~222m registered patients. It has an impact on reducing care gaps and is one of the few online healthcare providers qualified to accept payments from China's public health insurance system, which covers >95% of the population. WeDoctor's services are especially valued in rural areas, where there are fewer physicians than the national average of 1.5 per 1,000 people.

In response to the COVID-19 crisis the company launched the WeDoctor Global Consultation and Prevention Center (GCPC),  which provided a free 24/7 global online health enquiry service, psychological support, prevention guidelines and real-time pandemic reports. Just before the pandemic, WeDoctor planned to float its medical and health service function on the Hong Kong stock exchange at a valuation ~US$7bn. However, it was pulled because of the Beijing-Hong Kong tensions. WeDoctor’s. other business functions, which include health insurance and health data services, were not included in its proposed flotation, and are likely to stay private to appease Chinese regulators.
 
DXY.cn
 
DXY.cn is an online healthcare community for doctors, patients, and healthcare organizations. It was founded in 2000 and is also based in Hangzhou. Over the past 2 decades it has evolved into the world’s largest community of physicians who use the platform to gain insights from colleagues, discuss new medical research, and report unusual clinical events. More recently, DXY has added a consumer-facing service that brings wellbeing advice and medical consultations to the public. DXY generates revenues from public-facing medical advertising and job recruitment for its life science clients, as well as clinics where patients can receive in-person medical care. According to TechCrunch, in 2021, DXY reached ~130m consumers, >9,000 medical organizations, and had a registered user base of ~20m.
 
Ping An Good Doctor

Ping An Insurance (Group), is one of the world’s largest financial services companies with >210m retail customers and ~560m internet users and is headquartered in Shenzhen, southeastern China. In 2014, it launched Ping An Good Doctor to provide end-to-end, AI-powered health services directly to patients. These include 24/7 online consultations, diagnoses, treatment planning, second opinions, and prescription management solutions. Today, Good Doctor has ~400m registered users and drives synergies across China’s healthcare ecosystem. The platform collaborates with >3,700 hospitals and is supported by an off-line healthcare network of >2,200 in-house medical staff and ~21,000 contracted experts to ensure quality and accuracy of its medical services. The company provides insurance coverage for both users and physicians, which helps to ease China’s healthcare payment pressures. Ping An Good Doctor’s technology also assists patients to manage their personal health records, treatment plans, and medical histories.
 
In 2019, the company launched the world's first AI-powered, un-manned healthcare service: the One-minute Clinic. This is a 3m2 booth, which patients walk into, enter their digitized medical history from their mobile phones, and add their symptoms. The clinic’s algorithms, which have been trained on data from >300m medical records, then make a diagnosis, prescribe drugs, and provide a treatment plan. Medications are purchased from an adjacent vending machine. Within a year of the start of the first clinic, Good Doctor rolled out ~1,000 units in shopping malls, airports and other public spaces throughout China providing onsite medical and pharmaceutical services 24/7. Today, the clinics provide accessible and affordable medical and health services to >3m users. Good Doctor believes that its AI-driven, un-manned clinics have a promising future helping to reduce China’s care gaps and has plans to expand its services into Southeast Asia. In December 2019, the company signed a strategic collaboration with Merck, an American pharmaceutical multinational to advance further intelligent healthcare in China.

 
Internet hospitals

Digital initiatives like those described above have led to the development and spread of internet hospitals, which are online medical platforms associated with offline access to traditional hospitals that provide a variety of services directly to patients. Today, internet hospitals are booming in China, driven jointly by government and market initiatives.
 
The first internet hospital was established in China’s Guangdong province in October 2014. It consisted of four clinics operated by doctors from the Second People's Hospital, an online platform operated by a medical technology company, and a network of medical consulting facilities based in rural villages, community health centres, and large pharmacy chain stores. Initially webcams were used for patients to communicate with physicians and share medical images of their conditions. A patient's vital signs were taken by on-site machines and uploaded onto the system. With all this information, physicians made a diagnosis and prescribed medications, which patients obtained from nearby pharmacies. According to the Lancet, two months after its launch, China’s first internet hospital “was dealing with ~200 patients and issuing ~120 prescriptions every day”. After six months, the number of patients had increased to >500 a day, ~60% of whom needed prescriptions. Soon afterwards, a network of consultation sites expanded to >1,000 facilities in 21 of Guangdong’s municipalities. In 2018, Beijing gave the legislative green light for internet hospitals, which prompted many Chinese digital health companies to start using internet-based AI solutions to meet the country’s medical and healthcare needs and contribute to the reduction of care gaps. By August 2021, >1,600 internet hospitals had been established in China. The public and physician acceptance of these and Beijing’s support for them suggests a new era in digital healthcare.

 
Internet + Healthcare” initiatives

Since 2018, a range of Internet + Healthcare” initiatives have consolidated and enhanced the position of digital healthcare innovations. The success and continual improvement of China’s digital health service platforms all benefit from Beijing’s policies to facilitate medical practice supported by digital tools. Laws and policies have been issued to support this digital transformation, including health data digitalization, data sharing, and interoperability across the whole of China’s healthcare ecosystem. After the outbreak of the COVID-19 pandemic, the government increased its “Internet + Healthcare” efforts to include telemedicine in state medical insurance coverage, and to lift barriers for prescribed drugs sold online.
 
Data advantage

Compared to the US and other Western democracies, China has significant data advantages to drive its digital healthcare initiatives. Eric Topol, a cardiologist, director of the Scripps Research Translational Institute, and author of Deep Medicine: How AI can make healthcare human again, argues that “China has a massive data advantage when it comes to medical AI research”. To put this in perspective, consider that Chinese patient healthcare data are drawn from the nation’s provinces, many of which have populations of >50m. By contrast, US AI research tends to be based on patient data often drawn from one hospital. China’s big data advantage allows machine learning algorithms to be more effectively trained to perform key functions in a range of clinical settings. Another comparative advantage of China is its large workforce of AI specialist, data scientists, and IT engineers, which can work on healthcare projects at comparatively low costs. This is partly the result of China’s emphasis over the past four decades to encourage science, technology, engineering, and mathematics (STEM subjects) in their schools and universities to fuel Beijing’s technological ambitions.

Not known for good data governance practices, but with intensions to expand internationally, China is now tightening its data protection regulations. For example, in November 2021 Beijing introduced the Personal Information Protection Law (PIPL), which is designed to prevent data hacks and other nefarious uses of sensitive personal information. Much like the EU’s General Data Protection Regulation (GDPR), the PIPL stipulates that an individual’s explicit consent must be obtained before their medical health data are collected, and it places the burden on medical AI companies to ensure that these data are secure.
 
2: Capabilities
 
Healthy China 2030

In October 2016, President Xi Jinping announced the nation’s Healthy China 2030 (HC 2030) blueprint, which put patient-centred healthcare at the core of Beijing’s healthcare plans, recognizing its ability to influence both social and economic development. The policy sets out China’s long-term approach to healthcare and shows the nation’s commitment to participate in global health governance, which Beijing recognises as necessary as it seeks to extend its international reach. By 2030, Beijing aims to reach health equity by embracing the United Nations’ Social Development Goal 3.8, which seeks to “Achieve universal health coverage, including financial risk protection, access to quality essential healthcare services and access to safe, effective, quality and affordable essential medicines and vaccines for all”. In 2019, Beijing announced an action plan to accelerate the delivery of Healthy China 2030. This puts patients first in an endeavour to build a healthy society by leveraging AI technologies to reduce the prevalence of lifestyle induced chronic disorders and subsequent care gaps. The World Health Organization (WHO) believes the policy “has the potential to reap huge benefits for the rest of the world”.
 
AI capabilities
 
As China’s economy has matured, its real GDP growth has slowed, from ~14% in 2007 to ~7% in 2018, and the International Monetary Fund (IMF) projects that growth will fall to ~5.5% by 2024. Beijing refers to the nation’s slower growth as the “new normal” and acknowledges the need to embrace a new economic model, which relies less on fixed investment and exporting, and more on private consumption, services, and innovation to drive economic growth. Such reforms are needed for China to avoid hitting what economists refer to as the “middle-income trap”. This is something many Western economies (and corporations) face: it is when countries achieve a certain economic level but then begin to experience diminishing economic growth rates because they are unable to effectively upgrade their economies with more advanced technologies. To avoid this scenario, for the past three decades, China has been investing in AI and systematically upgrading its economy.


You might also like:

Leaning-in on digital and AI


 
Today, China has a significant supply of innovative AI talent to deliver a Healthy China by 2030. Some of the world’s largest technology companies are Chinese and all are developing different aspects of AI applications. For example, Alibaba’s cloud division concentrates on using AI in healthcare and Baidu, which has numerous AI research laboratories in the US, is focussed on a range of AI innovations, which include “deep learning”, and “big data”. More recently, Baidu added a Business Intelligence Lab, which develops data analytics for emerging data-intensive applications, and a Robotics and Autonomous Driving Lab, which specializes in computer vision.
In 2017 China's State Council launched a 3-step plan to become a world leader in AI technologies by 2030, with a domestic AI industry valued ~US$150bn. Beijing completed step 1 in 2020 by establishing a “new generation” of AI technologies and technocrats and developing national standards, policies, and ethics for its emerging industry. Step 2 is anticipated to be completed by 2025, by which time China expects to achieve “major breakthroughs” in AI applications that will help the completion of upgrading the nation’s industrial sector and thereby avoiding the middle-income trap. The final step is anticipated to take place between 2025 and 2030, which, among other things, will project China internationally as the world leader in AI technologies.
 
3: Understanding Beijing
 
Regulatory changes

A decade ago, foreign MedTechs operated in China with relative ease. Chinese regulations were lighter than they are today, and companies were supported by a multi-layered network of small scale and localised sub-distributors. This fragmented structure resulted in higher prices and tended to encourage corruption, but the relatively high margins obtained from foreign products allowed medical device corporations to compensate the multiple distribution levels and still make a profit. In return, domestic Chinese distributors managed the market and foreign MedTechs did not engage directly with hospitals and physicians.
 
Volume-based procurement

Recent regulatory changes have disrupted this modus operandi for foreign MedTechs. One change positioned to have a significant impact on MedTech profits is volume-based procurement (VBP). This is aimed at lowering the price of medical consumables by tendering the market volume of cities, provinces, or the country to manufacturers with the lowest price. Following a successful pilot with pharmaceuticals, VBP was extended to medical devices in 2019, and since then it has had a significant effect on certain products. For example, the price of cardio stents and hip and knee implants have been reduced by ~70% to ~90%. China’s message is clear: Medtechs are either ‘in’ with significantly lower prices, or ‘out’. This suggests that companies wishing to enter or grow their franchise in the Chinese market will have to adapt their business models by accelerating their pre-launch registrations and post-launch commercialization strategies for new products as margins on legacy offerings are expected to be substantially reduced. However, review processes for new offerings have become longer, more bureaucratic, and more expensive than they were five years ago. For example, if a Class 2 device without clinical studies took ~9 months to register five years ago, today expect ~2 years. VBP has forced foreign MedTechs to consolidate their multi-layered distribution channels to improve economies of scale. 
 
More recently Beijing has introduced a two-invoice policy for the medical devices industry: (i) MedTech to a distributor, and (ii) distributor to a hospital. This will push small and less competitive distributors out of the market and shorten and consolidate supply chains. The likely effect of this is for Chinese distributors to concentrate more on logistics to “deliver product”, rather than managing the market. To the extent that this is the case, a larger share of customer engagement will become the responsibility of MedTechs.
 
This will mean that foreign corporations trading in China will need to reassess their capabilities and adjust their business models. Further, MedTechs operating in China should expect VBP to increase the significance of “value”. This is because the policy is likely to enhance the purchasing power of hospital administrators and reduce that of physicians.  As a result, companies might expect procurement conversations to focus less on clinical outcomes and more on the overall value of products and their potential to minimize costs. Many readjustments companies will be obliged to make to their business models may be achieved by having someone local on the product management team rather than engaging high-margin agencies to resolve critical, but relatively simple domestic challenges.
 
A narrow window of opportunity for foreign MedTechs

Beijing’s “in China for China” policy makes it a condition that foreign companies entering the Chinese market must share their technology and intellectual property (IP) with a domestic “partner”. Beijing has been using this condition to acquire valuable scientific knowhow, which has helped the country to develop a large domestic medical device industry. According to a 2021 research report from Deloitte, a consulting firm, “China now boasts over 26,000 medical device manufacturers”. Beijing’s policies render China a substantially more challenging market to enter and to grow in than it was five years ago. China’s market opportunities for foreign corporations are not only getting tighter; they are getting shorter, and their orientation is changing away from surgeons towards patients. Further, Beijing is on a relentless drive towards self-reliance and tolerates the presence of Western companies in its domestic markets only for as long as they contribute offerings that are useful to the Chinese Communist Party. If China is successful in delivering on its healthcare and high-tech development plans, the window of opportunity for many foreign MedTechs could be only ~10 years.
 
China’s different

China and the Chinese are unlike the West and Westerners. When Deng Xiaoping’s started China’s reforms in 1978 and opened the nation to the world’s trading economies, he created a socialist market economy, in which private capitalists and entrepreneurs co-existed with public and collective enterprise. This formed the foundations for China’s phenomenal economic growth, prosperity, reduction of poverty, massive infrastructure investment, and development as a world-class technology innovator. As a result, many Western business leaders and politicians believed that China had abandoned ideology in a similar way that former communist regimes of Eastern Europe did in the early 1990s after the fall of the Soviet Union. However, such a transformation did not happen in China, which remains a one-party authoritarian state, tightly governed by the Chinese Communist Party (CCP), whose constitution states that China is a “people’s democratic dictatorship”. The CCP has a mission to become the world’s leading technology economy by 2030. This is backed by substantial sovereign wealth and a supply of relevant high tech human capital and an impressive history of national achievements.
 
Scale and speed of transformation

The phenomenal politico-economic progress China has made in a relatively short time is an indication of the nation’s determination, and its ability to affect change, and contextualizes Beijing’s policies to make China a self-reliant economy in the not-too-distant future. A 2022 report jointly released by China’s Development Research Center and the World Bank highlights the nation’s transformation in just four decades, from a struggling agrarian society to a global superpower. The nation’s achievements include increased health insurance coverage to >95% of its 1.4bn population, lifting ~0.8bn people out of poverty, which accounts for ~75% of global poverty reduction in the same period, a burgeoning middle class, which by 2030, will have grown from today’s ~0.3bn to ~0.7bn. In 2010, China overtook Japan to become the world's second largest economic power after the US when measured by nominal GDP. According to the World Bank, in 1960, China's GDP was ~11% of the US, and in 2019, ~67%. Not only is China the world's second-largest economy it has a permanent seat at the United Nations Security Council, modernised armed forces, and an ambitious space programme. China’s growing international clout and economic leadership positions it well to replace the US as the greatest superpower.

Such factors provide a context for Western corporation with global pretentions wishing to engage with and learn from China. At the 13th Annual National People’s Congress in March 2022, Premier Li Keqiang called for “faster breakthroughs” in key technologies, and said the government would increase the tax rebate for small and medium-sized science and technology firms from 75% to 100% and grant tax breaks for basic research to encourage innovation. Significantly, the Congress also underscored self-reliance in China’s economic priorities amid warnings of trade headwinds and geopolitical complexities.

 
Takeaways
 
China is too big a commercial opportunity to ignore. In 2021, China accounted for >18% of the global economy, rising from ~11% in 2012, its GDP was ~US$18trn, and per capita GDP reached US$12,500, which is close to the threshold for high income economies. In recent times, the contribution of China's economic growth to the world economy has been ~30%, which makes China the largest growth engine for the global economy. However, the relationship between China and the rest of the world is changing. As China becomes more self-reliant, its exposure to the world has decreased. Add to this (i) international trade disputes, (ii) increasing geopolitical tensions between the US and China, (iii) the nation’s evolving new rules to evaluate technology flows, (iv) increase of protectionism and (v) its healthcare mission to pivot towards patients, and you have significantly changed trading conditions than a decade ago. Misjudging Beijing’s rapidly evolving commercial ecosystem could be costly for Western MedTechs.
view in full page
  • Digital therapeutics and artificial intelligence (AI) techniques are increasing their influence on the medical devices industry and fuelling a shift of healthcare away from hospitals into peoples’ homes
  • This poses a challenge to traditional medical device companies (MedTechs) that solely focus on manufacturing physical devices for hospital-based episodic interventions
  • Some MedTechs are changing their business models and strategies, diverting their focus to patients, and adding digital therapeutic applications to their legacy offerings
  • Zimmer-Biomet and Stryker are MedTechs that have embraced digital therapeutics and AI
  • Stryker’s CEO advises other MedTechs to ‘lean-in on AI and don’t be sceptical’
 
Leaning-in on digital and AI
 
Rapidly growing digital therapeutic technologies are disrupting hospital-based healthcare and posing a challenge to those medical device companies that are slow to complement their legacy physical product offerings with patient centric digital solutions. Such technologies have the potential to enhance patient outcomes, reduce healthcare costs, and give providers access to new revenue streams. Today, digital solutions increasingly contribute to the prevention, management, and treatment of a wide range of diseases and health conditions. Their rapid growth is driven by advances in the behavioural sciences, artificial intelligence (AI) techniques and the increase in the consumer health wearables market, which is converging with the regulated medical devices market. This convergence facilitates care to move away from hospitals and into peoples’ homes.
 
In this Commentary
 
This Commentary describes how two decades ago a world-renowned surgeon and CEO of a large hospital group warned that digital therapeutics would disrupt healthcare and push a lot of hospital-based care to peoples’ homes. For years the medical devices industry did not pay too much attention to such warnings and continued to focus on manufacturing physical products for surgeons in hospitals. The Commentary describes two leading MedTechs - Zimmer-Biomet and Stryker – which have recently begun to reinvent themselves and embrace digital therapeutics and AI techniques expected to improve patient outcomes and reduce surgical inconsistencies. We briefly develop this thought process by suggesting how machine learning AI techniques might be employed to reduce the high failure rates of spinal surgeries. The Commentary describes the large and growing global market for digital therapeutics and prescription digital therapeutics, a large proportion of which are enabled by wearables and telehealth. The market for digital therapeutics is large enough and growing fast enough to pose a threat to traditional medical device companies that solely manufacture physical offerings and fail to develop digital solutions to improve patient journeys. Although some MedTechs neither have the resources nor the mindsets to develop digital solutions, it seems reasonable to suggest that, in the medium term, they will be obliged to acquire or develop such assets to remain competitive. However, achieving this will be challenging.
  
Early warnings of change

Over a decade ago, Devi Shetty, warned health professionals to prepare for care to become heavily influenced by digital therapeutics, which he argued would move a significant portion of care away from hospitals and into peoples’ homes. This warning had resonance because Shetty is a surgeon as well as being the founder and executive director of Narayana Health, one of India’s largest hospital groups. In an interview with HealthPad in 2012 he suggested that hospitals were becoming less relevant in a new, and rapidly growing digitally driven healthcare ecosystem. “Healthcare of the future will be dramatically different to that of the past. The future is not an extension of the past. In the future, chronic illnesses will be treated at home”, said Shetty and continued,The next big thing in healthcare is not going to be a magic pill, a faster scanner, or a new operation. It’s going to be digital therapeutics, which will dramatically change the way health professionals interact with patients. Every step of a patient’s care journey will be informed by software. This will make healthcare safer for the patient and shift most of hospital activities to the home. If a physician doesn’t have to operate on a patient, the patient can be anywhere, distance doesn’t matter”. Shetty repeated this argument at a 2022 Microsoft ‘Future Ready’ conference suggesting that, “95% of people who are unwell, don’t need an operation. All they need is medical intervention, which can be enabled by digital technology and telehealth and treated in the home”.
 
Leading MedTech companies reinventing themselves
 
Two decades after Shetty’s warning, the CEOs of Zimmer-Biomet and Stryker, respectively Bryan Hanson, and Kevin Lobo, have made substantial commitments to digital therapeutic solutions that improve patient outcomes, reduce surgical inconsistencies and extend treatment and monitoring to the entirety of patients’ journeys, much of which takes place in patients' homes. Medical device companies that fail to develop software solutions or link-up with providers of such technologies could risk losing market share to emerging competitors.

 
Zimmer-Biomet and digital therapeutics

Zimmer is a player in total knee arthroplasties, which involve replacing the knee joint with a prosthetic device that carries out similar functions as a person’s own knee. The surgery has become routine. In 2020, US physicians carried out ~1m total knee arthroplasties, and by 2030, ~2m such procedures are expected to be carried out annually in the US. In 2020, the global total knee replacement market was valued at ~US$7.8bn, expected to grow at a CAGR of >6%, and reach ~US$12.5bn by 2027.

In 2021, Zimmer and Canary Medical, a software company, which had developed an implantable digital therapeutic application, received approval from the US Food and Drug Administration (FDA) to market Persona IQ: the world’s first ‘intelligent’ total knee replacement. Zimmer’s traditional knee prosthesis is embedded with Canary’s technology to provide a range of automatic, reliable, and accurate data and analyses that facilitates remote monitoring and tracking of patients' post-operative progress long after they have left hospital.  Following this success, Hanson is directing a substantial percentage of Zimmer’s R&D spend on the development of digital therapeutic solutions, and Persona IQ is expected to be the first in a pipeline of intelligent joint prostheses.

 
Stryker and digital therapeutics

In a March 2022 interview, Stryker’s CEO, Kevin Lobo, stressed his ongoing commitment to increase his company’s digital therapeutic and AI capabilities. In 2021 Stryker acquired Gauss Surgical, which had developed Triton™, an AI-enabled app for real-time monitoring of blood loss during surgery. “After a mother gives birth”, says Lobo “it’s important to calculate how much blood she’s lost. Today, this quantification is very crude and rudimentary. Triton™ allows you to use your smartphone to accurately measure the amount of blood that is in sponges as well as cannisters. It can distinguish between different liquids and measure only the haemoglobin. This is critical to determining whether a mother needs a transfusion or not. You would be shocked, even here in the US, how often a mother doesn’t get a transfusion she needs or gets one she doesn’t need”.

In January 2022, Stryker acquired Vocera Communications for ~US$3bn. Vocera is a US Nasdaq traded company founded in 2000 that makes wireless communications systems for healthcare and has developed a digital platform, which helps connect caregivers and "disparate data-generating medical devices". The platform is used by >2,300 facilities throughout the world, including ~1,900 hospitals. Interoperability between the platform and >150 clinical and operational systems reduce health risks and enhance the consistency of surgical procedures, speeds up staff response times; and improves patient outcomes, safety, and affordability. According to Lobo, "Vocera will help Stryker significantly accelerate our digital therapeutic aspirations to improve the lives of caregivers and patients".

Lobo has made AI a shared service. Stryker employs ~200 software engineers that are using AI. “This we never had before at Stryker. AI is going to be a central core competence for our company. I can see that all our business units are going to be using AI within the next two to three years”, says Lobo, who expects AI inspired digital therapeutic applications to “lead to more consistent outcomes for our procedures”. According to Lobo this is “a big deal because today there are a lot of variations in surgical outcomes”.

AI and its potential impact on spinal surgery

Spinal surgery is a good example of significant inconsistencies in outcomes. Each year, ~7.6m spinal surgeries are performed globally, and ~1.2m in the US, where spinal fusions account for ~60% of all procedures. Although ~50% of primary spinal surgeries are successful,  ~30%, ~15%, and ~5% of patients only experience a successful outcome after the second, third, and fourth surgeries, respectively. Machine learning AI techniques applied to patients’ electronic medical records (EMR) and clinical data could potentially reduce this high failure rate by predicting what product and surgical procedure could produce an optimal solution for individual patients.
You might also like: 

If spine surgery fails to relieve low back pain why is it increasing?


Robotic surgical spine systems, China, and machine learning
Let us briefly explain. Machine learning, a subfield of AI, is the capability of a machine to imitate intelligent human behaviour. It is the process of using mathematical models of data to help a computer to learn and adapt without following explicit human instructions. Machine learning employs algorithms (a set of instructions for solving a problem) to identify patterns in large data sets, potentially comprised of multiple sources, and then uses these patterns to create a predictive model. With increased training on more data, the results of a machine learning algorithm may become more accurate, much like how humans improve with practice. Once this point is reached, regulatory approval for the algorithm can be applied for under the FDA’s category of “software as a medical device”. Once approved, the algorithm may be used to help reduce the high failure rates of spinal surgery.
 
The digitalization of healthcare
 
MedTech leaders should be mindful of the impact that digital therapeutics is having on their industry, which goes far beyond embedding legacy physical offerings with sensors. Digital therapeutics is a rapidly growing healthcare modality, predicated upon scientific advances in the behavioural sciences and AI techniques, that help individuals to form habits, which improve their health, reduce healthcare costs and boosts productivity. Such software tools increasingly are used for the management and prevention of a range of debilitating and costly chronic conditions, including mental health challenges, substance abuse disorders, opioid-induced conditions, cancer, cardiovascular diseases, metabolic disorders, respiratory conditions, and inflammatory diseases. Chronic disease is a public health emergency. In the US, six in ten citizens are living with at least one chronic disorder. Not only are such conditions the leading cause of hospitalizations, disability, and death, but their total annual cost to the US exchequer, which includes lost economic productivity, is ~US$3.7trn.
 
The market for digital therapeutics is driven by a combination of different factors, including: technological advances, particularly consumer wearables (such as the Apple Watch and Fitbit apps, see below), the high penetration levels of mobile telephony, the growth of telehealth, the increasing demand from consumers to take more control of their health, aging populations, the large and escalating incidence of preventable chronic diseases, the need to control healthcare costs, and rising investments in digital therapeutics. According to Statista, a business data platform, in 2021 the number of people globally using digital therapeutic applications reached ~44m. Almost double the number of 2020. By 2025 the number of users is expected to reach >362m, and this only includes devices that have sought validation in clinical trials. The global digital therapeutics market is growing at a CAGR of ~31% and is projected to reach ~US$13bn by 2026, up from ~US$3.4bn in 2021.
 
An advantage of digital health modalities is their ability to deliver continuous personalized care and bridge large care gaps created by shortages of specialized health professionals. In the US, for instance, there are ~6,500 specialist physicians in full-time clinical practice to treat diabetes (endocrinologists), but there are ~27m Americans living with the condition. Similar health gaps occur in other common disease states. In developing economies, care gaps are even wider. For example, India has a chronic shortage of doctors and nurses and has ~77m people living with diabetes and ~55m people living with cardiovascular disease. The latter kills ~5m Indian citizens each year. India, like many other Asian countries, has chosen to deal with care gaps by establishing itself as a major presence in the digital health economy. By several key metrices, from internet connections to app downloads, both the volume and the growth of India’s digital economy now exceeds those of most other countries. Expect this shift to increasingly influence corporations looking to enter and extend their franchises in large and rapidly growing medical devices markets in developing economies. 

 
Cybersecurity challenges

Headwinds for digital therapeutic applications, particularly in Western democracies, include challenges of informed consent to use, safety and transparency, algorithmic fairness and biases, and data privacy. Digital therapeutic applications tend to be more vulnerable to cyberattacks than traditional medical devices, which are manufactured according to strict protocols by a handful of regulated manufacturing partners. By contrast, digital applications often rely on third-party software, which may be less rigorous than the usual medical device standards. Cybersecurity threats to digital therapeutics include data theft, identity disclosure, illegally accessing data, corruption of data, loss of data, and violation of data protection. These risks are accentuated by the fact that the modality is predicated upon the continuous monitoring of patients’ vital signs and increased connectivity between physicians, providers, payers, and patients and breaches can occur at various points along the path of data movement. Risk mitigation includes encryption protocols and the ability to control data access and data integrity. An indication of how quickly the US policy environment around cybersecurity is changing is in March 2022, the US Senate unanimously passed legislation, which would usher in sweeping changes to the federal legal landscape relating to cybersecurity and mandate companies to report damaging hacks and ransomware payments to the government.
 
Prescription digital therapeutics

Another indication of the growing significance of digital therapeutics is a recent US policy push to establish an equivalence between some wearable healthcare solutions and prescription drugs and medical devices. On 10 March 2022, two US senators, Catherine Cortez Masto, D-Nevada, and Todd Young, R-Indiana, introduced legislation to expand Medicare and Medicaid coverage to include prescription digital therapeutics. Medicare is a federally run US medical insurance programme covering ~64m citizens >65 and younger disabled people. Medicaid is a government assistance programme, funded by both federal and state governments, but run by individual states and covers the medical expenses of ~75m Americans on low incomes and with limited resources. This is significant because of the vast number of individuals covered by these health insurances and the fact that the US regulatory hurdle is one of the toughest in the world. Prescription digital therapeutics fall under the FDA category of “software as a medical device” and are subject to the same stringent requirements as drugs and medical devices, and must demonstrate evidence of clinical effectiveness, safety, and quality. After that they require a prescription for use, following a consultation with a doctor.
 
The bill would standardize US reimbursement codings for prescription digital therapeutics, which is expected to incentivize American doctors to increase prescribing them. This would not only facilitate greater access to a wide range of digital therapies for >44% of Americans receiving state healthcare support but potentially create a precedent for US private health insurance companies to increase their coverage of prescription digital therapeutics. This would significantly help to propel the modality into mainstream healthcare.



You might also like:

Nonadherence to prescribed medication: an orphan killer epidemic



Will behavioural techniques improve breast cancer outcomes?


 
The future of health wearables

In June 2020, as the COVID-19 crisis escalated, the FDA expanded its guidance for non-invasive patient-monitoring technologies, including the Apple Watch’s ECG function. In 2021, ~34m Apple Watches were sold worldwide; up from ~22.5m in 2018. In addition to smartwatches, there is a wide range of intelligent wearables that monitor your vital signs in real time, promote self-management of chronic conditions, help people to engage with their own health and incentivize them to change their behaviour to improve their health and lifestyles. Thus, digital therapeutic applications have the potential, among other things, to slow the development of chronic disorders and reduce hospital visits and readmissions. The size and growth rate of the wearable health technology market influences the decisions of insurers, employers, health providers and producers. For example, insurers use data from wearables to adjust their premiums,  corporates derive benefits from their employees using wearables, which include healthier company cultures, a reduction in employee turnover, an increase in workplace safety and enhanced efficiency.  
In the US, consumers' use of wearables increased from 9% to 33% in four years as of 2021. The use of wearables is likely to increase as they become more conventional, connectivity expands, and more accurate sensors are developed. Such developments are likely to provide further incentives for insurers and employers to use wearables to develop healthier lifestyles to boost profitability and cut costs. According to Gartner, a technological research and consulting firm, in 2021 worldwide user spending on wearable devices was ~ US$82bn, ~18% increase from the previous year. This seems reflective of consumers, encouraged by the COVID-19 pandemic, becoming more conscious about their health, wellbeing, and changes to their lifestyles. According to a 2021 Deloitte’s survey, ~58% of US households own a smartwatch or fitness tracker, and ~39% of Americans personally own a smartwatch or fitness tracker. ~14% of consumers have bought their fitness devices since the start of the COVID pandemic in 2020, and activities such as counting steps, workout performance, heart health, and sleep quality monitoring are amongst the most popular activities.
 
Telehealth

Another factor driving the shift of care away from hospitals to peoples’ homes is the development of telehealth. The COVID-19 pandemic caused telehealth usage to surge as consumers and providers sought ways to safely access and deliver healthcare. According to the US Centers for Disease Control and Prevention (CDC), by late March 2020, telehealth had increased >154% compared to the same period in 2019.  Since the peak of the COVID-19 pandemic, telehealth has become a permanent part in the delivery of healthcare. The telehealth market is expected to rise to >US$397bn by 2027 from US$42bn in 2019. According to Devi Shetty the history of healthcare will be written in two sections, BC, and AC: before COVID and after COVID.COVID-19 disrupted and transformed healthcare and forced inward looking healthcare professionals to rapidly change and adopt digital therapeutic technologies”, says Shetty.
 
The legacy of the COVID-19 related surge in digital therapeutics is an opportunity to make permanent hybrid care modalities created during the pandemic. The foundations for the opportunity are described in a 2021 McKinsey research report, which suggests that the pandemic, (i) accelerated the growth and acceptance of telehealth, which “stabilized at ~38X higher than before the crisis”, (ii) improved the attitudes of consumers and providers towards telehealth, (iii) made permanent some regulatory changes put in place during the pandemic (for example, Medicare and Medicaid’s expansion of reimbursable telehealth codes introduced in 2021 for US physician fee schedules, which have been made permanent), (iv) fuelled venture capital’s digital health investments, and (v) drove the adoption of digital therapeutics across a wide range of disease states. 
Shift in mindset

In the changing healthcare ecosystem, a primary strategic objective for MedTech leaders is to define relevant planning cycles and efficaciously manage from one cycle to the next. The current planning cycle in the medical devices industry is influenced by data, AI techniques, and patient centric digital therapeutic solutions. To effectively manage this cycle, MedTechs might consider copying Zimmer and Stryker and acquire complementary digital therapeutic assets and capabilities. Adapting M&A knowhow and experience to make such acquisitions is an option but not without risk.
You might also like:

Can elephants be taught to dance?


MedTech must digitize to remain relevant
This is because enterprises with digital assets and capabilities have different cultures, development practices, reimbursement policies and data management policies and practices compared to traditional medical device companies. It seems reasonable to suggest that poorly managed acquisitions could result in MedTechs ending up with a graveyard of unfulfilled digital technologies. To reduce this risk industry leaders might consider following Stryker’s example and recruit experienced digital and AI specialists, and make them a core competence.
 
Takeaways

In the near-term, disruptive digital technologies present both challenges and opportunities for medical device companies. Zimmer and Stryker have started to reinvent themselves through parallel efforts to digitize their legacy businesses, acquire complementary digital assets, and make AI a core competence. However, many MedTechs have not changed their business models and still focus R&D on making small improvements to existing product offerings. Corporate leaders considering changing their business models and strategies should be mindful that digital and AI assets and capabilities with the potential to create disruptive growth need to be protected from unnecessary bureaucratic burdens common in many traditional companies. To survive and prosper, managers might consider rethinking their operating models for innovation-led growth. The most effective models appear to combine a strategic process with multiple mechanisms for driving innovation development and scale-up. Stryker’s shared service of AI expertise is one example of a contrived core “capability” expected to transform legacy devices into growth engines that could help secure the company’s long-term survival. MedTech CEOs might do well to follow Lobo’s advice and, “lean-in on AI and do not be sceptical.”.
view in full page
  • MedTechs have built proficiencies to successfully create and market physical devices predominantly for the US and Western European markets
  • To remain relevant in the rapidly changing healthcare ecosystem they will need to develop advanced digital and data capabilities and increase their penetration of Asian markets, which will present challenges for most of them
  • Will companies be forced to decide whether to remain hardware manufacturers or become software enterprises, or can they look both ways and prosper?
  • Given the rate of market changes, the next 5 years represent a window of opportunity for traditional MedTechs to pivot and transform their strategies and business models
 
Can elephants be taught to dance?
MedTech’s strategic challenges
 
MedTechs are at a crossroad of manufacturing physical devices and developing software solutions. Both aim to deliver value by enhancing patient outcomes while reducing costs. Can these two scenarios co-exist, or will industry leaders be forced to choose one or the other?
 
For decades, many companies have displayed a deep-rooted reluctance to transform their business models and adopt digitalization strategies and have used M&A activity to become bigger. This suggests that a significant proportion of MedTech leaders are likely to manage increased competition and changing healthcare ecosystems by accelerating M&A activities, which are familiar to them and require no significant change. However, such activities alone will not future-proof companies. Over the next five years, “informed” MedTechs will benefit by shifting away from their current business models that depend on developing and selling physical products predominantly to hospitals in the US and Western Europe and move toward providing patient-centric software solutions as partners in dynamic, connected international healthcare ecosystems.
 
M&A activity to enhance scale

For decades, M&A activities have helped MedTechs to acquire mature assets to tuck into their existing sales and distribution channels. More than anything, this has assisted them to increase their scale, while optimising their portfolios, reducing competition, and improving profits. Over the past decade, when Western markets became more uncertain, monetary policy tightened, technologies advanced, and global economic growth slowed, MedTechs responded by exploiting the fall in the cost of capital to increase their M&A activities with the main purpose of increasing their scale: bigger was generally perceived by industry leaders to be better.
 
Before the COVID-19 pandemic crisis, 2020 was expected to be a strong year for MedTech’s M&A. However, the disruptive impact of the coronavirus outbreak slowed the industry’s M&A performance, and between July 2019 and June 2020, M&A expenditures plunged by 60% compared to the previous 12-month period. Activity returned in Q3, 2020, and today, although high asset valuations and increasing cost of capital have impacted M&A transactions and re-focused attention on organic growth, there are signs that a M&A buyer’s market is developing, but with a difference.
 
The difference is a significant number of M&A transactions do not appear to be focussed entirely on acquiring scale. While there are still some advantages to increasing scale, there are disadvantages, which include having to integrate and service more customers, more employees, and more institutional investors, and this often contributes to strategic rigidities.

 
The demise of scale

The significance of scale was first elaborated in 1937 by Nobel economics laureate Ronald Coase in his seminal paper, The Nature of the Firm, and ~50 years later, repeated by Michael Porter in his book, Competitive Advantage. Both Coase and Porter suggested that scale gained from reducing the ratio of overhead to production would increase the power of firms in markets. In 2013, Rita McGrath challenged this thesis in, The End of Competitive Advantage, by suggesting that bigger was not necessarily better. According to McGrath, in an increasingly high-tech environment, more important than size, is whether enterprises have access to technical capabilities, which can drive top-line growth in dynamic market settings.


Recapitalized MedTech’s M&A firepower
 
According to a 2020 report on the state of the MedTech industry, published by EY, a consulting firm, between July 2019 and June 2020, MedTechs took advantage of low interest rates, and financing levels more than doubled to a record US$57.1bn compared to the previous 12 months; with >40% resulting from debt financing. Thus, as we emerge from restrictions imposed by the COVID-19 pandemic, there is a lot of liquidity in the market and larger MedTechs have significant M&A firepower. Will they use this to become bigger, or will they use their capital to make strategic investments in new technologies and to penetrate large rapidly growing Asian markets?
M&A driving a shift to digital health

In H1,2021, the MedTech sector recorded a total of 33 M&A deals, up from 25 in the whole of 2020. There is some evidence to suggest that some companies in the sector are using their renewed M&A firepower to acquire high growth digital and AI opportunities that can be integrated into their existing product offerings to provide access to new revenue streams and help companies pivot away from being solely dependent upon manufacturing physical devices. We briefly describe four such deals.
 
In January 2020, as the first COVID-19 case was reported in the US, Boston Scientific paid US$0.925bn for Preventice, a developer of mobile health solutions and remote monitoring services, which connect patients and caregivers. Its digitally enabled service has the potential to reduce healthcare costs and improve patient outcomes. In February 2020,  Medtronic, acquired, for an undisclosed sum, Digital Surgery, a London-based privately-held pioneer in surgical AI, data and analytics. The acquisition is expected to accelerate Medtronic’s plans to incorporate AI and data into its laparoscopic and robotic-assisted surgery platforms. In December 2020 Philips acquired BioTelemetry for US$2.8bn. BioTelemetry is a US-based provider of remote cardiac diagnostics and monitoring, with offerings in wearable heart monitors and AI-based data analytics and services. The deal provides Philips with the capability to expand its remote monitoring business outside of hospitals and into lower cost day-care settings and patients’ homes. One of the largest healthcare deals of 2020 was Teladoc’s US$18.5bn acquisition of Livongo, a remote patient monitoring company, founded in 2014, to build a cloud-based diabetes management programme, linking a person’s glucose monitor to personalized coaching to help control blood sugar levels. In 2019, just one year before Teladoc’s acquisition, Livongo IPO’d at a valuation of US$355m, and expanded its products and services to cover high blood pressure and behavioural health with an ultimate goal of leveraging digital medicine to address “the health of the whole person”. 
 
These four acquisitions are from market segments, which run parallel to traditional medical devices and are often perceived by some MedTech executives to be competitors destined to be controlled by giant tech companies such as Apple, Huawei, and Samsung. However, given the rate at which technology is developing, the speed at which MedTech and pharma are converging, and the renewed liquidity in the market, it might be more efficacious for MedTechs to view such specialised digital health companies as partners rather than competitors.
 
Technologies helping MedTechs to develop actionable solutions

Today, many new biomedical technologies are being developed and benefit from continuous miniaturization, enhanced battery life, cost reductions and increasing data storage capacity. One such technology is photoplethysmography (PPG), a non-invasive, uncomplicated, and inexpensive optical measurement method that employs a light source and a photodetector to calculate the volumetric variations of blood circulation. PPG is employed in smartphones and wearables that are used by billions of people worldwide. There is a large and growing global research endeavour to develop more effective and sophisticated PPG algorithms that could be attached to traditional, non-active medical devices and implants to provide accurate and reliable real time monitoring of a wide range of conditions.
 
Outside of specific health monitoring technologies, few MedTechs collect, store, and analyse data generated by their existing traditional devices and implants, and even fewer use such data to facilitate real time, monitoring of conditions. However, some companies are beginning to transform their dumb devices into intelligent ones to gain access to new revenue streams. For example Zimmer-Biomet’s smart” knee, utilizes a biosensor [an analytical device that uses natural biological materials to detect and monitor virtually any activity or substance] to generate self-reports on patient activity, recovery, and treatment failures, without the need for physician intervention and dependence upon patient compliance. 
 
According to Roger Kornberg, Professor of Structural Biology at Stanford University and Nobel Laureate for Chemistry, “the excitement of biosensors pertains to their microscopic size and the ease with which they can transmit wirelessly in real time information about responses to treatment from an implantable device within the body”. [See video below].
 
A fast-growing field of AI is tiny machine learning (TinyML), which has the capability to perform on-device, real time, sensor data analytics at extremely low power, typically in the mW [one thousandth of a watt] range and below. The technology is expected to make always-on use-cases economically viable and accelerate the transformation of dumb devices and implants into smart ones.

 
 
Changing traditional R&D models
 
In their search for innovative healthcare solutions, MedTechs might consider increasing their R&D spend and reorganizing their R&D function. MedTech’s R&D spend, as a percentage of revenues, has slowed compared to levels the industry recorded prior to the 2007 financial crash. Overall, the industry tends to allocate more of its capital to share buybacks and investor dividends than to R&D. This strategy may please shareholders in the short term, but it suggests some uncertainty among industry leaders about how to invest for growth in the longer term and could have a medium- to long-term potential downside. 
 
Further, a significant percentage of R&D spend goes on tweaking existing products rather than creating new ones. Given that the future of the industry is dependent upon innovation, it seems reasonable to suggest that, as competition increases and markets tighten, MedTechs will need to consider increasing their R&D resources and capabilities to develop innovative technologies that provide improved actionable solutions across entire patient journeys.

Unlocking value from R&D innovations might require a different culture and new operating models to the ones that tend to prevail today. Instead of lengthy R&D cycles fixed on the launch of a physical product, it could be more beneficial to focus on developing minimum-viable patient-centric solutions, which research teams can deploy early, test, learn from and enhance. Moreover, R&D strategy sessions might benefit by including a mandatory question: “In the near- to medium-term, are there any evolving technologies likely to disrupt a specific market segment important to our company?”.

 
The potential of innovative technologies to disrupt markets
 
To illustrate the significance of this question, consider traumatic brain injury (TBI), which each year affects ~69m individuals worldwide. There is no cure for the condition, and the cornerstone of its management is to monitor intracranial pressure (ICP). [Pressures >15 millimetres of mercury (mm Hg) are considered abnormal, and ICP >20 mm Hg is deemed pathological]. An ICP monitor is expected to be easy to use, accurate, reliable, reproducible, inexpensive and should not be associated with either infection or haemorrhagic complications. Currently, the gold-standard is to drill a small burr hole in the skull, insert a catheter and place it in a cavity [ventricle] in the brain, which is filled with cerebrospinal fluid (CSF). Such an invasive intraventricular catheter system is accurate and reliable, but it is also a health-resource-intensive modality, which runs a risk of haemorrhage and infection. Recent advances in PPG and other technologies have accelerated research developing non-invasive techniques to continuously measure and monitor ICP, which in the medium-term, could replace the gold standard and avoid drilling a hole in a traumatised patient’s skull.   
  
Pros and cons of the COVID-19 crisis

One beneficial outcome for MedTechs of the COVID-19 crisis has been the change in regulatory norms, which favour innovation. In the US, the FDA reduced barriers to market entry for new devices by increasing its emergency use authorization (EUA), which fast-tracks the availability of medical devices. Also, at the onset of the pandemic, the EU deferred for one year the implementation of its Medical Device Regulation (MDR), which governs the production and distribution of medical devices in Europe. In mid 2021, when governments began removing the outstanding legal restrictions imposed to reduce the impact of the third wave of the COVID-19 pandemic, some MedTechs, which had invested in remote communication strategies, chose to build on the changes they had made and invest further in digitalization AI strategies, while many others reverted to their labour-intensive supply channels. According to a June 2021 Boston Consulting Group (BCG) study, “On average, MedTech companies are still spending two to three times more on selling, general, and administrative (SG&A) expenses (as a percent of the costs of goods sold) than the typical technology or industrial company”.
 
A potential disadvantage for MedTechs of the COVID-19 pandemic is that it can lead to an excessive focus on short-term challenges and put off addressing longer-term strategic threats.
 
MedTech executives have never had it so good

Why are some companies reluctant to transform their strategies and business models?

We suggest that a deep-rooted resistance to change results from MedTechs “never having it so good” over a long period. Indeed, for several decades before the global economic crisis in 2007 and 2008, the medical device market was buoyed by limited competition, benign reimbursement policies, aging populations, and a slower pace of technological change compared to today. These factors promoted double-digit growth rates, investor confidence, and solid valuations. This fostered a sense of security among C suites and encouraged “business as usual” agendas, which tended to focus on sharpening legacy products, legacy business models, legacy forms of market access and pricing and legacy capabilities.
You might also be interested in:

Who should lead MedTech?

The 2007-8 financial crisis only inflicted a short-lived blow to the industry and most companies bounced back relatively quickly. Throughout the decade that followed, MedTechs maintained solid financial performance, steady growth, investor confidence and robust valuations. Many enterprises across the industry ended 2019 in a strong position, with some trading at 52-week highs and the industry overall growing revenues at ~6%.
In 2020, the COVID-19 pandemic threw some segments of the industry off course by a substantial reduction in elective care. However, by 2H 2021, most MedTechs had recovered, albeit their annual growth in revenues did not recapture the heights of the early years of the 21st century.
 
MedTechs became like elephants

It seems reasonable to suggest that decades of commercial success shaped the mindsets of industry leaders and resulted in MedTechs becoming like elephants. In 1990, James Belasco published, Teaching the Elephant to Dance, in which he likened organizations to elephants. The book describes how trainers shackled young elephants to a stake securely embedded in the ground so that they could not move away despite their efforts. By the time the elephants became fully grown and had the strength to pull the stakes out of the ground, they were so conditioned they did not move and remained in position even though most were no longer tethered to the stakes. The author uses this analogy to warn how companies can become stuck in obsolete working practices, which are obstacles to their future commercial success.

In 1993, IBM, the world’s largest manufacturer of mainframe computers, had become “an elephant” continuing to produce hardware appliances when the industry was embracing software solutions. IBM, which had posted a US$8bn loss, appointed Lou Gerstner, an executive from outside the computer industry, to turn the company around. Nine years later, IBM had become one of the world's most admired companies. In a book published in 2002, entitled, Who Says Elephants Can't Dance?, Gerstner described how he successfully changed IBM from a maker of hardware to a service orientated company.
 
A 5-year window of opportunity
 
A doubt as to whether many traditional MedTechs can be taught to dance was sewn in a 2021 BCG study cited above, which suggested that enterprises “do not yet have the capabilities in place to develop and implement a next-generation, omnichannel commercial model”. Ten years from now, the MedTech market is projected to be significantly different to what it is today, and what it has been for the past four decades. However, it seems reasonable to assume that because of its size and growth rate, [~US$0.5tn, growing at a compound annual growth rate (CAGR) of ~6% and projected to reach US$0.75tn by 2030], many industry leaders will not feel any pressing need to transform their strategies and business models in the short-term.

However, with a rapidly changing healthcare ecosystem, it seems reasonable to suggests that, to remain relevant after 2030, MedTechs will need to use the next five years as a window of opportunity to prepare solutions that enable them to focus on entire patient treatment pathways, create best-in-class distributive services, and develop digital marketing and sales capabilities that help to expand their influence beyond selling hardware. This will require targeting the “right” market segments, developing the “right” solutions, funding in the “right” R&D, creating the “right” playbooks; and recruiting, retaining, and developing the “right” people with the “right” capabilities.

 
From restricted staged events to real time distribution

Companies are rich reservoirs of clinical data and expertise, but the data tend to be kept in silos and distributed intermittently to a limited number of clinicians and providers at “staged” events. Digital technologies can unlock these assets and facilitate real time, online marketing, self-service portals, and virtual engagements; all of which can provide physicians and providers with unprecedented access to knowhow that can help improve the quality of care and reduce costs. However, shifting to such a distributed care model to drive profitability requires developing a digital, remote, marketing and sales force, which is supported by data analytics, virtual demonstrations, automated call reporting, and AI-supported coaching tools.
 
The reduction of obstacles to data rich digital distributed care strategies

While distributed computing and communications systems have significantly enhanced a wide range of commercial organizations, they have yet to take root in MedTech settings, despite data sharing being critical in modern clinical practice and medical research. A challenge for MedTechs is to engage in data sharing that reconciles individual privacy and data utility. This will entail universally agreed AI and machine learning practices. Although there are sophisticated technologies that can help with this, MedTech’s management and information systems’ personnel may not be prepared to effectively reconcile these competing interests and push for universal data standards. According to a US National Institute of Health report, “The lack of technical understanding, the lack of direct experience with these new tools, the lack of confidence in their management, the lack of a peer group of successful adopters (except for a few academic medical organizations), and uncertainties about reasonable risks and expectations all leave conservative organizational managers hesitant to make decisions”. 
 
While the mindsets of some industry leaders appear to be obstacles to change, other obstacles to transformative business models have been reduced. For instance, privacy is now less of an obstacle for data-rich strategies than it once was. Increasingly, patients show a willingness for their clinical and personal data to be used anonymously in the interest of improving healthcare. Further, regulators’ attitudes towards data are changing.  In September 2021 the FDA published its AI enabled devices that are marketed in the US, which embrace the full scale of approvals from 510(k) de Novo authorizations to Premarket (PMA) approvals. The FDA’s initiative comes at a time of continued growth in AI enhanced digital offerings that contribute to a variety of clinical spheres, and the increasing number of companies seeking to enter this space. There are ~130 algorithms approved for clinical use in the US and Europe.
 
A recent report from Frost & Sullivan, a US market research company, suggests that although in the near-term, traditional medical devices will continue to make up the bulk of the market, after 2024, they are expected to grow at only a CAGR of ~2%. By contrast, digitally enhanced medical devices, and algorithms, which facilitate managing patients remotely and non-intrusively, are expected to grow at a CAGR >14% and reach US$172bn by 2024.

 
The shift to low-cost settings

Over the next five years, as technology advances, populations age, healthcare costs escalate, patient expectations continue to rise, and markets tighten, we can expect the shift away from hospitals to outpatient settings and other lower-cost venues to accelerate. This move to a distributed care model is a headwind for traditional MedTechs, whose principal focus is provider systems rather than patients, and a tailwind for new players entering the market unencumbered by legacy supply chains, costs, and infrastructures. According to an EY 2020 study, ~70% of start-ups in the diagnostics segment have products applicable to the point-of-care setting.
 
Corporate venture funds

To help traditional MedTechs dance leaders of medium sized, well capitalized enterprises might consider copying the world’s largest MedTechs and create corporate venture capital (CVC) funds to invest in tech-savvy start-ups. While 7 of the top 10 MedTechs by sales have venture arms, many company leaders shy away from investing in early-stage, unproven technologies. However, CVC funds offer traditional corporates access to innovations and scarce science, technology, engineering, and mathematics (STEM) skills, which are necessary to capture and analyse data, deliver enhanced care, and drive biomedical R&D with the potential to improve patient outcomes and lower costs.
 
The latest giant MedTech to launch a CVC fund is Intuitive Surgical. In Q4 2020, the company started disbursing capital from its initial US$100m venture fund to start-ups developing digital tools and precision diagnostics, with an emphasis on minimally invasive care. Intuitive is the world’s largest manufacturer of robotic surgical systems for minimally invasive surgery. Since its lead offering, the da Vinci Surgical System, received FDA approval in 2000, it has been used by surgeons in all 50 US states, ~67 countries worldwide and has performed >8.5m procedures.

In the first three quarters of 2020, CVCs participated in investment rounds worth US$1.2bn, which amounted to >25% of the total venture funding the sector raised. The lion’s share went to products and solutions that address digital therapies, telehealth, and treatments for low-cost settings. Such technologies are positioned to continue receiving significant funding in 2022 and beyond. A 2021 study by Deloitte, a consulting firm, suggests that MedTech start-ups, unencumbered by legacy products and practices have capabilities, which stretch beyond traditional devices that support episodic care, and focus on distributed solutions, which address the full patient journey: from diagnosis to rehabilitation. The study also maintains that technologies employed by these enterprises are getting smarter, with ~70% of them including digital AI capabilities.
 
Further, MedTechs with CVC arms might consider allowing their digital business functions to operate within a different organizational framework, giving them greater decision-making authority and enhanced freedoms.

 
Asia Pacific MedTech markets

Before closing let us briefly draw attention to the increasing significance of the emerging Asia Pacific MedTech markets. For the past 4 decades, industry leaders were not obliged to seriously consider penetrating markets outside the US and Western Europe because ~70% of global MedTech revenues came from the US and Western Europe. However, as Western markets tighten, and become increasingly competitive, attention is moving East towards Asia.

Over two decades ago, a handful of giant MedTechs began investing in Asia, but most companies in the sector preferred not to risk navigating such unfamiliar healthcare territories. An early investor in the region was Medtronic, which, since ~2000, has achieved significant growth from a multi-faceted strategy that included exporting innovative products from the US to China, establishing R&D facilities in China to design products specifically for the needs of the Chinese market, crafting partnerships with Beijing to educate patients in under-served therapeutic areas, and acquiring domestic Chinese MedTech companies.

Because of the current political stand-off between the two countries, such a China strategy is not so feasible as it has been over the past two decades. However, it is worth bearing in mind that Asia is comprised of 48 countries with a combined population of ~5bn, which is projected to reach 8.5bn by 2030, [~60% of the world’s population], with 1 in 4 people >60. In 2020, ~2bn Asians were members of the middle class, and by 2030, this demographic is projected to grow to ~3.5bn. Moreover, health insurance coverage in the region is expanding. By contrast, the middle classes in the US and Western Europe are smaller and growing at lower rates. According to the Pew Research Center in 2018, ~52% of the 258m US adults (>18 years) was considered middle class. The dynamics of the Asian middle class is driving a large and rapidly growing Asian MedTech market, which is on the cusp of eclipsing Europe to become the world’s second largest regional market, growing at a CAGR of ~9%.

Further, the region has become an important source of technological innovation. For example, in 2020, its digital health market was valued at ~US$20bn and projected to grow at a CAGR of ~21% until 2027, when its value is expected to be ~US$80bn. Despite its complexities and unfamiliarity, Asia represents a substantial opportunity for MedTechs. However, for Western enterprises to succeed in Asian markets they will require in depth local knowhow, long term commitments, agility, innovation, and robust strategies that can prosper under fiercely competitive conditions.  

 
Takeaways

MedTechs have built capabilities to develop, launch, market and sell physical devices. With some notable exceptions, few have the capabilities necessary to drive significant growth from digitalization and data strategies. Sharpening traditional commercial procedures and practices alone is unlikely to significantly increase growth, especially when competitors and new entrants have business models that are more effective, promote better patient outcomes and provide greater value to healthcare systems.  

MedTechs could play a significant role in the transformation of healthcare, but not without risks and some significant changes to the way they operate. Over the next five years, as competitive pressures increase, industry leaders have a window of opportunity to pivot. Here are six strategic questions that might help in this regard:
  1. Should we support significant investments in digitalization, and data analytics to improve our supply chains and R&D endeavours to convert dumb devices and implants into smart ones?
  2. What are the top three actionable innovations that we can develop in the near-term to provide access to new revenue streams?
  3. What are the top three technologies likely to disrupt our product offerings in the near- to medium-term and what should we do about them?
  4. Can we remain a hardware manufacturer while developing significant software solutions that embrace entire patient journeys or must we choose between manufacturing and software?
  5. How do we create valuable solutions that enhance patient journeys from data?
  6. How are global markets changing in ways that are not reflected in our company’s discussions?
The answers to these questions will help to shape a corporation’s strategy, and inform M&A and CVC activities, “must have” capabilities, desired partnerships, R&D spend and agendas, and the type of business models to pursue. All critical for teaching elephants to dance.
view in full page
  • Prime editing devised by researchers at the Broad Institute led by David Liu is a significant advance of the original CRISPR gene editing tool discovered in 2012
  • CRISPR can cut and edit your DNA to correct defects inside your body’s cells to prevent and heal a range of incurable diseases and has revolutionized biomedicine
  • The original CRISPR is fraught with inaccuracies referred to as off target effects
  • Prime editing substantially reduces CRISPR’s off target effects and has the potential to correct up to 89% of known disease-causing genetic variations
  • CRISPR also has the capacity to edit genes in an embryo in such a way that the change is heritable
  • In 2018 Chinese researcher He Jiankui “created” the world’s first CRISPR babies
  • This triggered international criticism from scientists and bioethicists
  • A principal concern is that CRISPR is easy-to-use, cheap, regularly used in thousands of laboratories throughout the world and there is no internationally agreed and enforceable regulatory framework for its use
 
For better or worse we all now live in CRISPR’s world
 
In 2012 the world of biomedicine changed when a revolutionary gene editing technology known as CRISPR-Cas9 (an acronym for Clustered Regularly Interspaced Short Palindromic Repeats) was discovered. The technology harnesses your body’s naturally occurring immune system that bacteria use to fight-off viruses and has the potential to forever change the fundamental nature of humanity. Since its discovery CRISPR has been developing at lightning speed primarily because it is simple and affordable and today is used in thousands of laboratories throughout the world.
 
In this Commentary
 
In this Commentary we describe prime editing, which is the latest advance of the CRISPR's tool box, devised bya team of researchers, led by Andrew Anzalone, a Jane Coffin Childs postdoctoral fellow from the Broad Institute of MIT and Harvard and published in the October 2019 edition of Nature. Prime editing is significant because it provides a means to eliminate the unintentional consequences of CRISPR and therefore bring the technique closer for use in clinics. But this is still a long way off.
 
We also review a case where an ambitious scientist “created” the first CRISPR babies. This immediately triggered international criticism and a call for tighter regulatory control of the technology. Scientists and bioethicists are concerned that CRISPR can easily be used to create heritable DNA changes, which ultimately could lead to ‘designer babies’.
 
These two accounts of CRISPR might seem “opposites” and not sit well together in a single Commentary. Notwithstanding, what prompted putting them together was John Travis, the News Managing Editor of the well-known scientific journal Science, who soon after CRISPR’s discovery in 2012  said, “For better or worse we all now live in CRISPR’s world”
 
CRISPR and your DNA

CRISPR is different to traditional gene therapy, which uses viruses to insert new genes into cells to try and treat diseases and has caused some safety challenges. CRISPR, which avoids the use of viruses, was conceived in 2007 when a yogurt company identified an unexpected defence mechanism that its bacteria used to fight off viruses. Subsequent research made a surprising observation that bacteria could remember viruses. CRISPR has been likened to a pair of microscopic scissors that can cut and edit your DNA to correct defects inside your body’s cells to prevent and heal a range of intractable diseases. The standard picture of DNA is a double helix, which looks similar to a ladder that has been twisted. The steps in this twisted ladder are DNA base pairs. The fundamental building blocks of DNA are the four bases adenine (A), cytosine (C), guanine (G) and thymine (T). They are commonly known by their respective letters, A, C, G and T. Three billion of these letters form the complete manual for building and maintaining  your body, but tiny errors can cause disease.  For example, a mutation that turned one specific A into a T results in the most common form of sickle cell disease.
 
The original CRISPR
 
The original CRISPR tool, which is the first and most popular gene editing system, uses a guide RNA (principally a messenger carrying instructions from your DNA for controlling the synthesis of proteins) to locate a mutated gene plus an enzyme, like Cas9, to cut the double-stranded gene helix and create space for functioning genes to be inserted. However, a concern about CRISPR is that the editing could go awry and cause unintended changes in DNA that could trigger health problems. Findings of a study published in the July 2018 edition of  the journal Nature Biotechnology found that such inaccuracies, referred to as off-target effects, were substantially higher than originally reported and some were thought to silence genes that should be active and activate genes that should be silent. These off-target effects, such as random insertions, deletions, translocations, or other base-to-base conversions, pose significant challenges for developing policy associated with the technology.

Subsequently however, the paper was retracted, and an error correction was posted on a scientific website. Contrary to their original findings, the authors of the Nature Biotechnology paper restated that the CRISPR-Cas9 gene editing approach, "can precisely edit the genome at the organismal level and may not introduce numerous, unintended, off-target mutations".

 
Base editing

Notwithstanding, researchers remained concerned about CRISPR’s off target effects and several devised a technique, referred to as base editing, to reduce these. Base editing is described in three research papers published in 2017: one in the November edition of the journalProtein and Cell’, another in the October edition ofSciencethe and a third by researchers from the Broad Institute, in the October edition of the journal Nature’. Base editing takes the original CRISPR-Cas9 and fuses it to proteins that can make four precise DNA changes: it can change the letters C-to-T, T-to-C, A-to-G and G-to-A. The technique genetically transforms base pairs at a target position in the genome of living cells with more than 50% efficiency and virtually no detectable off-target effects. Despite its success, there remained  other types of point mutations that scientists wanted to target for diseases.

 

Prime editing
 
Prime editing is different to previous gene editing systems in that it uses RNA to direct the insertion of new DNA sequences in human cells. According to David Liu,  the senior author of the 2019 Nature paper and a world renowned authority on genetics and next-generation therapeutics, “a major aspiration in the molecular life sciences is the ability to precisely make any change to the genome in any location. We think prime editing brings us closer to that goal”.  Because prime editing provides a means to be more precise and more efficient in editing human cells in a versatile way, which eliminates many of CRISPR’s unintentional errors, it significantly expands the scope of gene editing for biological and therapeutic research.
You might also like:

CRISPR-Cas9 genome editing a 2-edged sword
There are around 75,000 different mutations that can cause disease in people and prime editing has the potential to correct up to 89% of known disease-causing genetic variations. According to Liu, "Prime editing is the beginning, rather than the end, of a long-standing aspiration in the molecular life-sciences to be able to make any DNA change in any position of a living cell or organism, including potentially human patients with genetic diseases". Liu’s team at the Broad Institute intends to continue optimizing prime editing. In their October 2019 Nature paper researchers reported that they can precisely correct mutant genes, which cause sickle cell anaemia and Tay Sachs disease.
 

Sickle cell anaemia and Tay Sachs
 
Sickle cell anaemia is an inherited form of anaemia. This is when there are not enough healthy red blood cells  (haemoglobin) to carry adequate oxygen throughout your body. The condition is the most common inherited blood disorder in the US, affecting 70,000 to 80,000 and further it is estimated  each year some 300,000 babies are born with the disorder worldwide. Tay-Sachs disease is a rare and fatal nerve condition often caused by the addition of four extra letters of code.  Although anyone can be a carrier of  the disease it is much more common among people of Ashkenazi (Eastern European) Jewish descent. In the Ashkenazi Jewish population, the disease incidence is about 1 in every 3,500 new-borns and the carrier frequency is 1 in every 29 individuals.

 
Some moral and ethical implications of CRISPR
 
Being able to modify your DNA with CRISPR tools has transformed scientific research and is revolutionising medicine although it will be some time before the technology is regularly used in clinics. In addition to its potential benefits there are significant moral and ethical challenges associated with the technology, especially when it is used for germline engineering, which is the process by which your genome is edited in such a way that the change is heritable. Inappropriate use of germline editing could dent the progress of the CRISPR technology.
 
The first CRISPR babies
 
One well publicized  inappropriate use of CRISPR is a team in China, led by He Jiankui of the Southern University of Science and Technology in Shenzhen, which in November 2018 “created” the first gene edited twins, known by their pseudonyms Lulu and Nana. He edited the twins’ cells to be immune to HIV infection when they were embryos, therefore ensuring that every cell in their bodies were changed, including their reproductive ones, which means their edited genomes can be passed on to their children and grandchildren, despite the fact that scientists cannot be sure what the long term effects of such lasting modifications might be. The twins are the first CRISPR babies and the first humans to have every cell in their body genetically modified using the technology.
 
In 2015 Chinese researchers were the first to edit the genes of a human embryo in a laboratory dish. Although the embryos did not go to term, the experiment triggered an international outcry from bioethicists, who argued that CRISPR should not be used to make babies. Notwithstanding, He Jiankui did just this.
 
He  employed CRISPR to alter a gene in IVF embryos to disable the production of an immune cell surface protein, CCR5, which HIV uses to establish an infection before insemination. CCR5 is a well-studied genetic mutation, and there is scientific and medical value in understanding how CRISPR can be used to disable and prevent HIV/AIDS. He believed that the use of CRISPR technology was medically appropriate and expected his experiment, “to produce an IVF baby naturally immunized against AIDS”. But more contentiously, He created twins who could pass the protective mutation to future generations. It is CRISPR’s ability to easily and cheaply edit human embryos, eggs, or sperm in order to create irrevocable changes and the potential for designer babies, which raises concerns.  
 
He defended his work at a Hong Kong genomics conference in late November 2018, but there was immediate and significant international criticism about the scientific and ethical legitimacy of his experiments, which broached China’s guidelines as well as international ethical and regulatory norms. A Chinese government investigation found He to have violated state law in pursuit of “personal fame and fortune”.  His endeavours cost him his university position and the leadership of a biotech company he founded, which had successfully raised US$43m start-up capital and was advised by Craig Melloprofessor  of the University of Massachusetts Medical School and Nobel Laureate for medicine in 2006 for his genetics research.
 
Opacity and scientific competition
 
Some scientists are reluctant to be critical of He and suggest his studies, which resulted in the first CRISPR babies,  simply signal the “next chapter in the technology’s story”. He Jiankui appears to be an ambitious scientist desperate to become the first to conduct the gene editing experiment on humans, but who made some significant errors of judgement by initiating his study prematurely and by withholding information from regulatory authorities and his university. A generous interpretation might suggest that He was motivated by science and humanity. Through a Beijing-based organization, which helps Chinese people with HIV, he recruited couples for his experiment where only the fathers were living with HIV infections, which they managed by antiviral drugs. Eight couples agreed to participate, although one subsequently withdrew.
 
Since He’s statement at the Hong Kong conference he has disappeared, but the background to his studies has been well documented. In late 2017, He, who specialized in sequencing DNA, began his efforts to produce human babies from gene edited embryos and before and during his study it is reported that he sought advice from international experts in the field and communicated openly with international colleagues about his plans. Notwithstanding, it is alleged that He faked a blood test for one of the fathers in the study, aware that in China the HIV status of the father would disqualify him from participating in fertility treatments. Also, He failed to appropriately inform the hospital where the twins were edited and implanted of the status of his experiments.

You might also like:

Will China become a world leader in health life sciences and usurp the US?


 
Fierce competition among scientists is not uncommon and competition fuels opacity among scientists in their battle to become the first to make a discovery. Indeed, it is not uncommon for scientists to shield their ideas and research. This does not condone He’s actions, but it might help to explain them. Generally speaking, scientific opacity is not created by ambitious scientists alone, but it is partly created by scientific funding bodies and research institutions. Such opacity is a significant obstacle to open collaboration. In addition to wanting to be the first, He’s intentions might also have been an attempt to spare children of parents with HIV/AIDS  from inheriting the disease.
CRISPR is not yet safe
 
Be that as it may, many scientists agree that CRISPR is not yet safe and precise enough to be used in human embryos. In the March 2019 edition of Nature a group of 18 prominent CRISPR scientists and bioethicists from seven countries called for a global moratorium on heritable genome editing until the establishment of an international framework that would compel countries to establish both scientific safety and broad societal agreement before allowing the technology to progress.  "We call for a global moratorium on all clinical uses of human germline editing; that is, changing heritable DNA (in sperm, eggs or embryos) to make genetically modified children" , the scientists wrote.

Opposition to germline editing is mixed
 
However, opposition to germline editing is mixed. In February 2017 the US National Academies of Sciences, Engineering, and Medicine (NASEM) published a report, which did not call for an international ban of germline editing, but instead suggested that it "might be permitted" if strict criteria were met. In July 2018, the UK’s Nuffield Council of Bioethics published a report on heritable genome editing and suggested that under certain circumstances it could be morally permissible, even in cases of human enhancement. 

Given that CRISPR is cheap, easy-to-use and already an effective tool in thousands of laboratories throughout the world, it seems reasonable to assume that standards and laws are unlikely to prevent a determined scientist and desperate patients from using the technology prematurely. Indeed, science and medicine have a history of researchers attracting public criticism for undertaking experiments prematurely only to have those experiments become common medical practices: in-vitro fertilization  (IVF) is one such example. Although IVF has a chequered history today it accounts for millions of births worldwide and  1% to 3% of all births every year in the US and Europe.
 
Germline engineering and somatic genetic modification
 
Here we describe the difference between germline and somatic adjustments. The former uses CRISPR to modify DNA in such a way that the change is heritable. The latter uses CRISPR to modify the DNA of people with incurable diseases in a way that such modifications are limited to the people treated and not passed on to future generations. Broadly speaking, your body has two kinds of cells: somatic and germ cells. The vast majority are somatic. These cells make up your body and are responsible for forming all your familiar structures: such as your skin, blood, muscles and organs etc. Your somatic cells die when you die so there is no chance of them creating a new organism. However, germ cells are different. Early in your development your germ cells  are sequestered: they divide more slowly and under restricted circumstances. Germ cells cannot become a physical feature such as an ear or a finger, but they do make the only bits of you, which can form a new person: your eggs and your sperm. Every cell in your body holds your DNA in an unbroken lineage stretching back millions of years and thousands of generations, but only the germline has a chance to go forward. Human germline modification means deliberately changing the genes passed on to children and future generations and thereby creating genetically modified people. Somatic genetic modification is different. It adds, cuts, or changes the genes in some of your cells, typically to alleviate a medical condition. The use of human genome editing to make edits in somatic cells for purposes of treating genetically inherited diseases is already in clinical studies. If perfected, somatic gene editing (gene therapy) holds promise for helping people who are sick, affecting only an individual consenting patient. With the exception of He’s studies, human clinical studies with CRISPR have been limited to somatic cells. In effect, this renders CRISPR no more consequential than any other experimental drug or treatment. Any CRISPR-made somatic cell changes are a genetic dead-end and are not heritable. However, germline cells have the possibility of immortality, with the potential to affect thousands of people over the course of several generations. Tampering with germline cells is therefore a much more serious proposition.
 
Clinical studies of gene therapies
 
Gene therapy is primarily available in a research setting. The US Food and Drug Administration (FDA) has approved only a limited number of gene therapy products for sale in the US.According to the US National Institutes of Health, which serves as a clearinghouse for biomedical research worldwide, there are over 800 clinical studies currently underway to test gene therapy as a treatment for genetic conditions. The list includes a relatively small number of CRISPR studies as a treatment for cancers of the lung, bladder, cervix and prostate, the majority of which are in China where doctors appear to be leading the race to treat cancer by editing genes. For the past two decades China has been investing heavily in biomedicine. It is one way that China is able to compete with the West and demonstrate its technological prowess in the 21st century. Also, it is important for China to keep its vast population healthy in the 21st century. Given the somewhat ambiguous state of CRISPR technology it seems reasonable to assume that the first therapeutic applications of CRISPR will be in diseases where cells can be taken out of your body, edited, checked to ensure they are safe and then reintroduced. This suggests blood disorders such as sickle cell or thalassemia.
 
Takeaways
 
Bioethicist Henry T (Hank) Greely, professor at Stanford University, California, US, compares CRISPR to the Model T Ford, which was not the first automobile, but because of its simplicity of production, dependability and affordability it transformed society. CRISPR is not the first gene editing technology, but it is cheap and easy to use and is on the cusp of transforming biomedicine. A significant challenge is getting CRISPR tools, which are capable of performing gene edits, into the right place and to ensure they are safe. Prime editing is a smart, innovative and a substantial step forward in achieving this. Indeed, David Liu and his colleagues from the Broad Institute  have expanded the gene editing toolbox to facilitate ever-more precise editing ability and efficiency. Significantly, the overwhelming majority of human genetic disorders are due to the types of mutation that prime editing is able to correct, which stands the technique in good stead to be useful in therapies for intractable diseases. Notwithstanding, it is one thing to cut out sequences of DNA that cause genetic diseases and another to make genetic changes that are passed down to all later generations. Because CRISPR is cheap, easy-to-use, in the hands of scientists throughout the world, and already has been used to create babies with heritable traits, the technology provokes deep ethical and societal debate about what is, and what is not acceptable in efforts to prevent disease. Given that CRISPR has the potential to change the nature of humanity, it is incumbent on all citizens, not just scientists, bioethicists and regulators, to call for open and inclusive processes associated with all aspects of CRISPR.
view in full page