Tag

Tagged: CRISPR Cas

Sponsored
  • ‘Base editing’ is a more efficient version of CRISPR Cas-9 technology
  • CRISPR Cas-9 is a ground-breaking gene editing technology that was discovered in 2012
  • CRISPR Cas-9 operates like molecular scissors to cut and remove mutant strands of DNA and creates space for functioning genes to be inserted
  • CRISPR technologies raise hope for new therapies to replace traditional medicines and provide a one-time procedure to cure devastating inherited disorders that have no cure or few treatment options
  • Recent studies suggest that CRISPR Cas-9 is not as accurate as initially thought and can introduce thousands of unintended ‘off-target’ mutations into the genome
  • Base editing significantly reduces ‘off-target’ mutations because it does not cut the DNA but uses a chemical process to convert just one letter (base) of DNA into another
  • 66% of genetic illnesses involve mutations where there is a change in a single letter of DNA
  • A significant challenge for base editing is in the delivery of the technique
 
Base-editing next-generation genome editor with delivery challenges

Since the first human genome was sequenced in 2003 there has been a revolution in human genomics, which has transformed the way we think about diseases and their causes and has paved the way for the development of therapies that target both the illness and the patient. It has also led to the introduction of the genome-editing tool CRISPR Cas-9 in 2012. This transformed gene editing from a devilishly difficult task to an easy and inexpensive “day-to-day” laboratory technology, which allows scientists to cut-out and change sections of DNA at specific sites in an organism or cell. CRISPR technology revolutionized genetic research and raised hope that it could provide a powerful therapeutic tool for millions of people living with inherited debilitating diseases for which there are either no cures or few treatment options. Recently, next-generation gene-editing technologies have been developed, which have reignited the hope that gene therapies could eventually replace traditional medicines and be used by physicians in clinics as a one-time procedure to cure some of the most devastating inherited disorders. Notwithstanding, scientists have cautioned that the therapeutic use of CRISPR technologies have significant technical, safety, regulatory, ethical and delivery obstacles to overcome before they can be used as therapies.
 
In this Commentary
 
This Commentary describes a new and expanded gene editing technology called base editing or chemical surgery, which compliments CRISPR Cas-9, but instead of cutting strands of DNA it provides a more accurate and predictable means to rewrite single letters (bases) of DNA and RNA. This enables scientists to make more targeted and precise alterations to DNA and RNA with less unintended consequences, referred to as “off-target” effects.  Base editing has significant therapeutic potential for thousands of human disorders known to be caused by a single genetic error and range from sickle-cell anaemia to metabolic disorders to cystic fibrosis, which currently lack options. The new base editing techniques are described in three research papers, which appeared in scientific journals in late 2017. One was published in the November 2017 edition of the journal ‘Protein and Cell’, another in the October 2017 edition of the ‘Nature’ and a third in the October 2017 edition of the journal ‘Science’. Research reported in these papers represents an important advance in our ability to alter single letters (bases) in peoples’ DNA and RNA. Notwithstanding, scientists caution that before base editing techniques become standard clinical practice the technology will require more research, extensive clinical studies and significant advances in delivery methods.
 
CRISPR and intellectual property battles

Base editing is a development of CRISPR Cas-9 technology, which was developed by a group of researchers from University College Berkeley, the Max-Plank Institute, Harvard University and The Massachusetts Institute of Technology (MIT) and others. The Broad Institute, a non-profit disease research facility established jointly by Harvard University and MIT, obtained the basic US patents on CRISPR Cas-9 in February 2017 after a heated patent dispute between two of the technology’s originators. On one side Jennifer Doudna of University College Berkeley and Emmanuelle Charpentier of the Max-Planck Institute in Berlin. On the other side Feng Zhang of the Broad Institute. While the Broad Institute has been considered the winning party in the US, the European intellectual property landscape is a different story.  Due to technical errors associated with listed CRISPR inventions and claimed priority dates, the European patents filed by the Broad Institute have been revoked

The Broad Institute is expected to appeal the decision and the gene-editing intellectual property battles continue. Notwithstanding, this has not slowed the development and commercialization of the technology.
 
Technologies to edit the genetic code and some ethical challenges

CRISPR Cas-9, discovered in 2012, is a particularly versatile and inexpensive gene editing technology. Since its discovery it has been used extensively by scientists throughout the world in an attempt to further their understanding of the role played by genes in disease. The technology works by slicing through the two strands of bases that spiral to create DNA’s famous double-helix and is especially useful when the goal is to insert or delete DNA bases. CRISPR acts like a genetic GSP: a guide molecule made of RNA that allows a specific site of interest on the DNA double helix to be targeted. The RNA molecule is attached to a bacterial enzyme called Cas-9 that works like a pair of “molecular scissors”, which can cut out strands of DNA at an exact point. This allows scientists to target and remove faulty genetic material and create space for functioning genes to be inserted in a similar way a word processor allows you to correct and enhance documents. Although CRISPR Cas-9 is increasingly being used in studies of genetic disorders, it has been challenging for the technology to fix a point mutation, caused by a change in a single DNA letter in a given gene. Further the technology’s cutting mechanism can result in “off-target” activity, which either can make changes to a gene you do not want changed or fail to change a gene that you do. This represents a significant challenge for scientists, and a major concern for the technology’s therapeutic applications.

For example, research published in the July 2018 edition of  the journal Nature Biotechnology discovered unintended deletions of thousands of DNA bases, including at spots far from the edit. Another study reported in the May 2017 edition the journal Nature Methods found that CRISPR Cas-9 introduced hundreds of unintended mutations into the genome. And a third study published in December 2017 in the Proceedings of the US National Academy of Sciences suggested that genetic variation between patients may affect the efficacy and safety of CRISPR-based treatments enough to warrant custom treatments. In addition to these technical concerns, ethical concerns about the technique also have been raised. In the March 2015 edition of the journal Nature, Michael Werner, the executive director of the Washington DC based Alliance for Regenerative Medicine suggested that ethical and safety issues should put germline editing research (a process by which every cell in the human body could be altered in such a way that the change is heritable) off limits because, “It’s still a little premature to say that we’ve resolved all these safety issues now,” says Werner. Notwithstanding, in July 2018 the UK’s Nuffield Council on Bioethics suggested that germline editing is “morally permissibly” under certain circumstances.
 
CRISPR triggers intense commercial activity

Despite safety and ethical concerns about CRISPR, genome editing has rapidly become a large fast-growing global market. In late 2012, Charpentier  suggested to a few colleagues, including Doudna, Zhang and George Church, professor of genetics at Harvard University Medical School who is credited with developing the first direct genomic sequencing method in 1984, that they should start a company to accelerate the gene editing technology into clinics.  They did not, but later the same scientists and others started separate genome editing companies. Four have become publicly traded companies and have successfully raised billions. For example, in 2013 Charpentier founded Crispr TherapeuticsBased in Switzerland, the company has become a US$2bn Nasdaq traded company. The other three, all based in the US are: Editas Medicine, which has a market cap of US$1.3bn and was founded by Zhang, Church and David Liu, Professor of Chemistry at Harvard University, a core member of the Broad Institute, and the first to describe base editing in research published in the May 2016 edition of the journal NatureDoudna is  a founding member of Intellia Therapeutics, which today has a market cap of US$1bn,  and Juno Therapeutics, which has a market cap of US$10bn was founded in 2013 through a collaboration of the Fred Hutchinson Cancer Research CenterMemorial Sloan-Kettering Cancer Center and the Seattle Children’s Research Institute.

Since their inceptions, big pharma companies have been competing to invest in them. In January 2018 Celgene, which already owned 9.7% of Juno agreed to acquire the rest of its stock for US$9bn in cash in order to gain access to Juno's pipeline of CAR-T cancer drugs. This technology entails extracting blood cells from patients, then using CRISPR to edit T cells (immune cells) outside the body - ex vivo gene therapy - in order to transform the cells into enhanced cancer fighters before reintroducing them back into the patient’s blood stream. Earlier Bayer, a German pharmaceutical company, acquired a US$35m equity stake in Crispr Therapeutics, which it increased in January 2018. In 2016 Bayer invested US$335m over 5-years in a joint venture with Crispr Therapeutics called Casebia, with the intention to discover, develop and commercialize new breakthrough therapeutics to cure blood disorders, blindness, and congenital heart disease. Casebia also expects to develop new delivery mechanisms for CRISPR technologies, which will be critical to future drugs meant to target cells in the human body. Crispr Therapeutics retains a 50% interest in the joint venture, and also gains access to Bayer’s state-of-the-art delivery technologies and protein engineering knowhow.
According to market analysis the global genome editing market is expected to grow at a CAGR of 14.5% to reach US$6.3bn by 2022. Market drivers include rising government funding and the growth in the number of genomic projects, high and increasing prevalence of debilitating and often fatal diseases, technological advancements, increasing production of genetically modified crops, and growing application areas of genomics.
You might also like:

CRISPR positioned to eliminate human papilloma viruses that cause cervical cancer


Tens of thousands of devastating diseases are the result of a single minute error in one letter the human genome
 
While big pharma competes to commercialize CRISPR Cas-9 technologies, scientists compete to develop ever-more versatile and efficient versions of the technology. One result of the competition among scientists is “base editing”, which is predicated upon the same basic mechanism as the standard CRISPR technology but differs because it does not require the DNA to be physically cut. Instead, base editing uses a chemical process to directly convert a single base (letter) of DNA to another without deleting and inserting random bases in the process.  Think of base editing as similar to changing one letter in a vast WORD document. The technique allows scientists to edit the body’s genes one letter at a time with exquisite precision.  Base editing rewrites single errors in the genetic code instead of cutting and replacing whole strands of DNA. The technique is not a replacement for CRISPR, but a complementary technology for altering the genome in an attempt to correct disease. Converting one letter to another may not sound significant until you consider that there are billions of letters in the human genome, and tens of thousands of diseases can be traced to a single minute error in just one letter in the human genome. Indeed, of more than 50,000 genetic changes currently known to be associated with disease in humans, 32,000 are caused by the simple substitution of one base letter for another. Base editing is significantly more efficient than standard CRISPR systems at making single base substitutions.
 
DNA molecules as a sequence of letters

Your genes are an instruction manual for your body. Hidden inside every cell in your body is a chemical called DNA. Genes are short sections of DNA, which are the biological templates your body uses to make the structural proteins and enzymes needed to build and maintain your tissues and organs. Genes influence how you look on the outside and how you function on the inside. The DNA that makes up all genomes is composed of four related chemicals called nucleic acids: (i) adenine ‘A’, (ii) guanine ’G’, (iii) cytosine ‘C’, and (iv) thymine ‘T’.  A sequence of DNA is a string of these nucleic acids (also called “bases” or “base pairs”). These bases connect in a specific way: ‘A’ always pairs with ‘T’, and ‘C’ always pairs with ‘G’. The letters represent the “alphabet” scientists use to write genetic code. The principal biological function of a base is to bond nucleic acids together. Nucleic acids are complex organic substances present in living cells, especially DNA or RNA. There are some 24,000 genes in the human genome, which are bundled into 23 pairs of chromosomes all coiled up in the nucleus of every one of your cells. There are about 37trn cells in the human body. Only about 1.5% of your genetic code, or genome, is made up of your genes. Another 10% regulates your genes to ensure that they turn on and off in the right cells at the right time.
 
The November 2017 Protein and Cell study

In the April 2015 edition of the journal Protein and Cell, scientists led by Junjiu Huang from Sun Yat-sen University in Guangzhou, China, reported research where he and his colleagues used CRISPR Cas-9 to correct abnormal β-thalassemia genes in human embryos without much success. Researchers suggested, “our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR Cas-9 platform, a prerequisite for any clinical applications of CRISPR Cas-9-mediated editing”. In the November 2017 edition of Protein and Cell Huang and colleagues demonstrated that they had enhanced the fidelity of CRISPR and used the new base editing technique for the first time in human embryos to repair a faulty gene that gives rise to β-thalassemia. They suggested that, “their study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by a base editor system”.
 

Β-thalassemia

Β-thalassemia is a serious blood disorder, common in China and southeast Asia, which can be caused by a single mutation in the DNA code. The disorder reduces the production of haemoglobin, which is an iron-containing protein in red blood cells that carries oxygen to cells throughout the body. Without treatment, patients with a severe type of β-thalassemia, usually die before age 5. Correcting this mutation in human embryos may cure people with the disorder and also prevent the disease being passed on to future generations.

Innovative approach

Humans carry two copies of every gene, and in many cases both versions have to be “healthy” to avoid disease. Because it is challenging for researchers to find a lot of embryos, which all have a rare double mutation, Huang’s team created a batch of cloned embryos, then took skin cells from patients with β-thalassemia, removed their DNA-containing nuclei, and introduced them into donor eggs that had their own nuclei removed. The eggs then developed into early stage embryos, which carried the β-thalassemia mutation. Despite the study’s success to effectively edit the embryos and repair the mutations it was only about 20% efficient. Huang noted that the base editing technique he and his colleagues used was not uniform across all cells in the embryos, and their endeavours only sometimes repaired one faulty gene instead of 2. This created what is called “mosaic embryos”, which have both normal and mutant cells and result in a patchwork of cells with different genetic make-up and is potentially dangerous. 

Huang concluded that more research is required to improve the safety of the study’s base editing approach. Notwithstanding, scientists believe Huang’s research represents a significant advance, and that base editing techniques hold out the potential to treat and prevent a number of serious and debilitating inherited human diseases, which are more common than some people realise. For example, 1 in 25 children are born with some genetic disorder, which includes β-thalassemia, cystic fibrosis, genetic blindness, sickle cell anaemia, muscular dystrophy, and Tay-Sachs disease.

 
The October 2017 Nature study

In October 2017, David Liu, and colleagues from the Broad Institute published a paper describing their latest and improved base editing research in the journal Nature. Liu's group genetically transformed base pairs at a target position in the genome of living cells with more than 50% efficiency, with virtually no detectable ‘off-target’ effects such as random insertions, deletions, translocations, or other base-to-base conversions. The work of Liu and his team is significant because it, “introduced point mutations more efficiently and cleanly, and with less off-target genome modification than a current Cas-9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells”. This clears the path for scientists to use base editing to address many more single-letter mutations than was previously possible. “What we’ve developed is a base editor, a molecular machine, that is a programmable, irreversible, efficient, and an extremely clean way to correct mutations in the genome of living cells,” says Liu.
 
Delivery is the challenge

Notwithstanding, Liu suggests that the status of base editing is like Amazon without UPS, its principal delivery agent, “Creating a machine that makes the genetic change you need to treat a disease is an important step forward, but it’s only one part of what’s needed to treat a patient. We still have to deliver that machine”, says Liu, and further, “We have to test its safety, we have to assess its beneficial effects in animals and patients and weigh them against any side-effects. We need to do many more things. But having the machine is a good start.” Liu is hopeful that base editing of DNA and RNA could be used as complementary approaches for a “broad set of potential therapeutic applications.” He and his colleagues are exploring base editing to fix blood and neurological disorders as well as hereditary deafness and blindness.
 
The October 2017 Science study and the advantages of editing RNA
 
In a paper published in the October 2017 edition of the journal Science, Feng Zhang, of the Broad Institute who is one of the original architects of CRISPR, and senior author describes a variant of base editing, which acts on RNA in human cells instead of DNA. RNA acts as a temporary genetic messenger within cells and naturally degrades in the body. This means that editing RNA instead of DNA does not result in a permanent change to a person’s genome, and therefore has significant potential as a tool for both research and disease treatment. Zhang’s base editing technique makes a temporary correction of a disease-causing mutation without permanent alteration to the genome. According to Zhang, editing DNA is, “permanent and very difficult to reverse, which poses a safety concern, while editing RNA is not.” Zhang’s approach is a potentially safer option when it comes to gene-fixing therapeutics, although any treatment using the technique would need to be administered repeatedly. But Zhang believes repetition could be an advantage because it allows for a therapy to be “upgraded” as scientific knowledge increases and provides a better understanding of specific disease states. The system can change single RNA nucleotides in mammalian cells in a programmable and precise fashion and has the ability to reverse disease-causing mutations at the RNA level, as well as other potential therapeutic and basic science applications.
 
Zhang and colleagues made one RNA-editing enzyme into a programmable gene-editing tool. “There are 12 possible base changes you can do,” says Omar Abudayyeh, a researcher at the Broad Institute and one of the paper’s authors. Having edited one, “we’re now thinking about the ways to do the other eleven.” By operating on RNA, Zhang and his colleagues avoid ‘off-target’ effects. “With RNA, you have to think about ‘off-targets’ a little differently.” says Abudayyeh. “If some of the RNA gets edited incorrectly the cell will have at least some amount of the right protein. If things go really wrong, the edit is reversible. You can always remove the system and the RNA will eventually degrade and recycle and revert back to normal,” says Abudayyeh. Liu and his team call their new creation REPAIR. They tested it on human cells growing in dishes and edited up to about 27% of the RNAs of two genes. The researchers did not find any ’off-target’ effects and suggest, “REPAIR presents a promising RNA editing platform with broad applicability for research, therapeutics, and biotechnology.”
 
Delivery challenges

Liu and other medical researchers have stressed the significant challenges associated with delivering CRISPR technologies, which have yet to be resolved before gene editing techniques become viable therapies. The conundrum researchers face is that your body’s biological barriers, which protect you from diseases are the same barriers that create significant obstacles for the delivery of genetic editors. Let us explain. Your DNA is like Fort Knox gold in that it is extremely well protected. For a harmful agent to access your DNA it first has to get under your skin and into your bloodstream. It then has to travel through your bloodstream without being detected by your immune system, which is comprised of networks of cells, tissues, and organs that work together to protect your body. One of the important cells involved in your immune system are white blood cells, also called leukocytes, which come in two basic types that combine to seek out and destroy disease-causing agents. Assuming the harmful agent successfully gets past all these biological barriers, it then has to penetrate your cell membrane and find a way to the nucleus of the cell. These biological defences help to keep you healthy by preventing harmful agents penetrating and transforming your cells into disease-making entities. But, they are the same obstacles that prevent scientists getting gene editors to the right place at the right time in the right quantity. Although delivery technologies are improving, Crispr Therapeutics, Editas Medicine, and Intellia Therapeutics, as well as, Casebia are all investing in delivery mechanisms, which remain significant challenges to overcome before gene editing becomes a regular therapy.  This is not only a concern for private companies, but also for the public sector. In January 2018 the US National Institutes of Health announced it will be awarding US$190m in research grants over the next six years, in part to “remove barriers that slow the adoption of genome editing for treating patients”.
 
Takeaways

Researchers have made substantial scientific advances in embryo gene editing technologies, which have significant potential for next-generation therapeutics. Base editing, described in this Commentary, is one advance, which has the potential to provide effective therapies for a range of disorders known to be caused by the mutation of a single letter in a gene, which currently have either little or no means of a cure. This is important because about 66% of genetic illnesses in humans involve mutations where there is a change in a single letter (or base). Notwithstanding, before such technologies become regular therapies in clinics there are major technical challenges, which need to be overcome in the delivery mechanism for these gene editors.
view in full page