Tag

Tagged: wearables

Sponsored
  • The race for critical minerals like rare earths, lithium, and cobalt is escalating, impacting healthcare and MedTech sectors reliant on advanced technology
  • Essential minerals for MRI machines, pacemakers, and wearable tech face supply threats from geopolitical conflicts, driving up costs and limiting access
  • China's control over critical mineral supplies exposes Western healthcare systems to risks, underscoring the need for supply chain resilience
  • Western firms should diversify supply sources, invest in recycling, support local mining, and partner with allies to reduce exposure to mineral shortages

Scarce Mineral Wars: How Resource Battles Are Redefining Healthcare and MedTech

In October 2024, the 16th BRICS Summit took place in Kazan, Russia, marking a watershed moment in global geopolitics with the bloc’s historic expansion to include five new members: Saudi Arabia, Egypt, the United Arab Emirates (UAE), Iran, and Ethiopia. This enlargement effectively doubled BRICS’ membership, evolving it from a coalition of five nations into an alliance of ten influential global players. Collectively, the expanded BRICS now represents ~46% of the world’s population and commands a substantial 35.6% share of global GDP measured by purchasing power parity (PPP) as of 2022. Within the bloc, China continues to dominate economically, contributing 52% of BRICS’ total GDP at PPP, underscoring its pivotal role in shaping the group’s trajectory.

Originally conceptualised by Goldman Sachs economist Jim O'Neill in a 2001 research paper, the term “BRIC” highlighted the emerging economic clout of Brazil, Russia, India, and China as a counterweight to the dominant G7 wealthy economies. Fast forward to 2024, the Kazan summit brought together 36 world leaders, including key figures from China, India, and Iran, signalling a shift in global power dynamics. Despite Western isolation of Vladimir Putin and his indictment by the International Criminal Court as a potential war criminal, the event underscored Russia’s enduring geopolitical influence and the gradual erosion of Western hegemony. Among the summit's most consequential developments was a renewed pledge to accelerate the de-dollarisation of global trade - a strategic manoeuvre designed to curtail the United States' ability to wield economic sanctions as a foreign policy instrument.
Internal disagreement has slowed its progress and in December 2024, Trump said he would impose 100% tariffs on the BRICS bloc of nine nations if they were to create a rival currency to the US dollar. Following his inauguration, he suggested imposing a 25% tariff on all goods imported into the US from Canada and Mexico. The President’s economic advisers appear split. Notwithstanding, we should expect a growing contest for influence in an increasingly multipolar world.
In this Commentary
 
This Commentary explores the geopolitical struggle over scarce minerals, focusing on the implications for Western healthcare and MedTech companies. It highlights the October 2024 BRICS summit's efforts to challenge American economic dominance, China's control over critical minerals, and the impact on medical technology development. The Commentary also outlines strategies for Western companies to navigate rising costs, supply chain vulnerabilities associated with shifting global power dynamics.
 
The Scarce Mineral Wars

The intensifying competition for critical minerals like rare earth elements, lithium, and cobalt has become a key battleground in the US-China rivalry. These resources are indispensable for advancing technologies in sectors such as healthcare, defence, MedTech, and green energy. Often dubbed the scarce mineral wars, this struggle extends beyond securing supply chains to asserting leadership in global technological innovation.

China’s dominant role in mining, processing, and exporting these minerals - bolstered by its Belt and Road initiative - has exposed vulnerabilities for the US and its allies. The 2024 US Geological Survey (USGS) highlights that the US relies on imports for >50% of 49 critical minerals and is fully dependent on imports for 15, with China as the main supplier for 24 of them. Recent Chinese export restrictions, including on graphite, have further underscored these risks, particularly for US industries.

Rare earth elements, essential for high-tech applications like MRIs, pacemakers, and wearable medical devices, and lithium and cobalt, critical for rechargeable batteries in medical equipment and data centres, exemplify the stakes. As Western nations seek to secure stable supplies, tensions over trade, tariffs, and technology transfer have escalated, raising concerns about the long-term resilience of Western healthcare systems and MedTech innovation.

Amid these dynamics, the return of Donald Trump’s administration in January 2025, with its confrontational foreign policy and emphasis on transactional alliances, signals potential trade conflicts that could further disrupt global supply chains, resource security, and technological advancement.
 
The Role of Critical Minerals in Healthcare and MedTech

In modern healthcare and MedTech, the reliance on critical minerals cannot be overstated. These materials are fundamental to manufacturing a wide range of devices and technologies that enhance patient care, improve diagnostic accuracy, and support healthcare infrastructure. Below are some examples illustrating the role these minerals play:
 
  1. Diagnostic Imaging Equipment Rare earth elements, particularly gadolinium, are used as contrast agents in MRI machines, which are crucial for diagnosing a variety of conditions, from brain tumours to joint disorders. The magnets inside MRI scanners also rely on rare earths like neodymium and dysprosium to achieve the high magnetic strength required for clear imaging. If these minerals become scarce or more expensive due to geopolitical conflicts, the cost of diagnostic procedures could rise, potentially limiting access to critical healthcare services.
  2. Pacemakers and Implantable Medical Devices Lithium batteries power a range of life-saving implantable devices, such as pacemakers and defibrillators. These devices are essential for patients with cardiac conditions and can improve quality of life for millions. As the demand for lithium increases, particularly with the surge in electric vehicle production, healthcare may face competition for the available supply, leading to higher costs or shortages.
  3. Wearable Devices and Telehealth The shift towards digital healthcare and remote monitoring has increased the demand for wearable medical devices, which frequently use rare earth magnets in sensors and lithium batteries for power. These devices, which include fitness trackers, blood pressure monitors, and continuous glucose monitors, are integral to preventive healthcare strategies and chronic disease management. Disruptions in the supply of rare minerals could compromise the availability and development of new wearable technologies, limiting healthcare providers' ability to offer innovative, patient-centred care.
  4. Electronic Healthcare Records and Data Infrastructure Data centres that store and manage electronic healthcare records rely on energy-dense batteries and servers that contain critical minerals. As the healthcare industry continues to digitise, secure access to these minerals will be necessary to maintain the reliability and scalability of health data infrastructure.
 

The first episode of HealthPadTalks is out now. Click here to listen to Navigating the Future of Healthcare

The Geopolitical Context and US-China Rivalry

The US has long been a leader in healthcare innovation, but its dominant position is increasingly under threat as geopolitical dynamics shift. China’s rise as a global superpower has been supported by its strategic approach to securing critical mineral resources. China controls ~60% of the world’s rare earth mining and >80% of its processing capacity. It is also a leading player in lithium production and the global supply of cobalt, much of which is mined in the Democratic Republic of Congo under Chinese ownership or partnerships. By comparison, the US has only recently begun to recognise the risks associated with mineral dependence and has struggled to build a robust domestic supply chain.

The strategic implications of China’s control over these minerals became clear when Beijing threatened to restrict rare earth exports to the US during the 2019 trade war. Such actions reveal how mineral supply chains can be weaponised, potentially disrupting the production of critical technologies in Western economies. This risk has only grown as tensions over trade policies, intellectual property rights, and geopolitical influence continue to escalate.

The 2024 BRICS summit, where leaders discussed ways to reduce reliance on the US dollar for international trade, further exemplifies the shifting geopolitical landscape. As nations like China, India, and Russia seek to establish alternative trading networks, Western companies are likely to face additional challenges in accessing critical minerals. For healthcare and MedTech companies, the ramifications could be significant, affecting everything from device manufacturing to R&D.

 
Impacts on Western Healthcare and MedTech Companies
 
  1. Rising Costs and Supply Chain Vulnerabilities As the US and China continue to vie for control over critical mineral supplies, Western healthcare and MedTech companies could experience rising costs for raw materials. The increased expense may be passed on to consumers in the form of higher healthcare costs, which could limit access to advanced medical technologies. Additionally, companies may face disruptions in their supply chains if geopolitical tensions result in export bans, trade restrictions, or other barriers to mineral access.
  2. R&D Delays The development of new medical technologies relies on the availability of rare minerals. For example, the miniaturisation of medical devices and the enhancement of diagnostic imaging technologies often require advanced materials that exhibit specific magnetic, conductive, or thermal properties. If these materials become difficult to source, the pace of innovation could slow, and some promising new treatments or devices might never reach the market.
  3. Regulatory and Strategic Pressures The US and Europe are becoming increasingly aware of the strategic importance of critical minerals and are implementing policies to reduce dependence on foreign sources. However, efforts to boost domestic mining and processing capacity have encountered environmental and regulatory hurdles, which may delay the development of local supply chains. Western healthcare companies may find themselves caught between complying with new regulations and securing the materials needed for product development.
  4. Technological and Competitive Risks If Western companies cannot secure stable supplies of critical minerals, they may fall behind in the global race to develop cutting-edge medical technologies. This could lead to a situation where Chinese companies, backed by government policies and access to essential resources, gain a competitive advantage in key areas such as diagnostics, wearable health technology, and surgical robotics.
  5. Broader Economic and Strategic Implications For decades, the US has been the world's largest MedTech market, with the majority of leading MedTech companies headquartered in America, enjoying a comfortable position as global market leader. However, the growing shift towards a multipolar world, where US influence is increasingly challenged, threatens to disrupt this status quo. The evolving landscape, marked by events such as the 2024 BRICS summit, suggests a shift in global trade dynamics and economic power. As alliances change and new economic blocs emerge, US-based healthcare and MedTech companies will likely face a stress test, requiring them to adopt adaptive strategies that can withstand the pressures of a diversifying global market and a potential erosion of their longstanding dominance.
 
Defensive Strategies for Western Healthcare and MedTech Companies

To navigate the challenges posed by the scarce mineral wars, healthcare and MedTech companies in the West must adopt proactive strategies. Here are some suggestions:
 
  1. Diversifying Supply Chains Companies should explore alternative sources for critical minerals, including partnerships with suppliers outside China or investments in developing new mining projects in regions like Australia, Canada, or South America. Diversifying supply chains can mitigate risks associated with geopolitical disruptions and ensure a more stable supply of raw materials.
  2. Investing in Recycling and Material Recovery The development of technologies for recycling critical minerals from electronic waste can provide a supplementary source of these materials. By recovering valuable metals from retired medical devices or other equipment, companies can reduce their reliance on primary mineral extraction and contribute to a more sustainable supply chain.
  3. Supporting Domestic Mining and Processing While regulatory and environmental concerns pose challenges, Western companies should advocate for policies that support the responsible development of domestic mining and processing capabilities. Government incentives for research in mineral processing technologies and investment in local supply chains could enhance resource security.
  4. Developing Substitutes and Alternative Technologies Investing in research to find substitutes for scarce minerals, or developing technologies that use less of these materials, can reduce dependency on critical supplies. For example, innovations in battery technology that rely on more abundant elements or synthetic alternatives for magnetic materials in imaging equipment could offer viable pathways to mitigate resource constraints.
  5. Building Strategic Reserves Similar to how governments maintain strategic petroleum reserves, companies and governments could collaborate to establish strategic reserves of critical minerals. This approach could provide a buffer against supply disruptions and price spikes, offering some stability in times of geopolitical crisis.
  6. Collaborating with Allied Nations Strengthening partnerships with allied countries that possess significant mineral resources can provide more reliable access to critical materials. International agreements that prioritise the export of minerals for medical and technological purposes could help secure supplies while fostering diplomatic ties.
 
Takeaways

The ongoing scarce mineral wars between the US and China are not just a trade dispute but a broader struggle for technological and economic dominance. As the global landscape shifts towards multipolarity, the implications for Western healthcare and MedTech companies are significant. Rising costs, supply chain vulnerabilities, and the risk of falling behind in technological innovation are threats that demand attention. By adopting strategies to diversify supply chains, invest in recycling, support domestic production, and collaborate internationally, Western companies can better navigate this challenging landscape. The path forward requires both strategic foresight and a willingness to adapt to an evolving geopolitical environment. In doing so, healthcare and MedTech firms can safeguard their future and continue to provide cutting-edge solutions that improve patient outcomes in a world of increasing complexity.
view in full page
  • MedTech growth strategies have taken advantage of low interest rates and cheap money to debt finance acquisitions of near adjacent companies with existing tried and tested products
  • This allowed companies to expand their product portfolios, geographic reach, and customer bases
  • Many MedTechs preferred such a growth strategy to investing in R&D to develop disruptive technologies that maybe outside their immediate field of interest
  • These technologies include 3D bioprinting, robotics, virtual reality, biometric devices and wearables, digital therapeutics, and telemedicine
  • All are patient-centric software driven technologies rather than hardware devices that serve the needs of hospitals
  • All are positioned to influence the shape of healthcare systems over the next decade
  • Many MedTech R&D investments are devoted to making small improvements to legacy products that prioritize the interests of large healthcare organizations over the needs of patients
  • Traditional MedTech M&A-driven growth strategies that have benefitted from an era of low interest rates and cheap money may now be challenged in the current period of higher interest rates, stagnate growth and rapidly evolving disruptive healthcare technologies.
  
Healthcare disrupters
 
On March 10, 2023, the Silicon Valley Bank (SVB) collapsed after a series of ill-fated investment decisions triggered a run on its assets. It was the largest bank failure since the 2008 financial crisis and the second largest in US history. The demise of SVB triggered a subsequent free fall in the shares of the Silvergate Bank, the Signature Bank, and the First Republic Bank. Then, on March 17, Credit Suisse shares crashed. Despite a US$54bn lifeline from theSwiss National Bankon  March 19, the bank collapsed and was ‘acquired’ by UBS for ~US$3bn. This banking crisis could create a weakness in corporate balance sheets more generally. Especially in MedTechs that have borrowed heavily in an era of low interest rates and cheap money, and now might be challenged by higher rates, economic stagnation, and rapidly advancing software driven healthcare technologies. These include, 3D bioprinting, robotics, virtual reality (VR), biometric devices and wearables, digital therapeutics, and telemedicine. All are positioned to influence the shape of healthcare over the next decade by: (i) changing the way healthcare is delivered, (ii) improving patient outcomes, (iii) lowering healthcare costs, (iv) increasing access to care, and (v) creating new business models as value shifts from hardware to software. Should the banking collapse be a warning to traditional MedTechs whose preferred growth strategies have been debt financed acquisitions of near adjacent companies with physical product offerings optimised for hospitals?
 
In this Commentary

This Commentary explores the potential vulnerability of some MedTechs that have taken advantage of the recent period of low interest rates and cheap money to pursue growth strategies dominated by the acquisition of near adjacent companies, and have not balanced this with investments in innovative technologies. These may not fit neatly into their existing product portfolios and business models but are positioned to have a significant influence on the medical technology industry and healthcare systems over the next decade. Such technologies include: 3D bioprinting, robotics, virtual reality (VR), biometric devices and wearables, digital therapeutics, and telemedicine. Before describing these, we briefly outline the causes of the recent banking crisis and suggest how it might signal a weakness in corporate balance sheets more generally.
 
The demise of SVB

Founded in 1983, headquartered in Santa Clara, California, USA, SVB was the preferred bank of the large and rapidly growing tech sector, and it quickly grew to become the 16th largest bank in America. Tech companies used SVB to hold their cash for payroll and other business expenses, which resulted in a significant inflow of deposits. Banks only keep a portion of such deposits as cash and invest the rest. Like many other banks, SVB invested billions in long-dated US government bonds. [Bonds are debt obligations, where an investor loans a sum of money (the principal) to a government or company for a set period, and in return receives a series of interest payments (the yield). When the bond reaches its maturity, the principal is returned to the investor]. Bonds have an inverse relationship with interest rates; when rates rise, bond yields and prices fall. During the past decade of historically low interest rates, bonds became a preferred investment vehicle. SVB’s problem arose when central banks throughout the world increased rates to curb inflation, partly caused by the hike in energy prices following the Ukraine war. For instance, in 2022, the American Federal Reserve raised interest rates seven times; from ~0 to 4.5%. As interest rates rose, SVB’s large bond portfolio lost money and the bank was forced to sell its bonds at a loss. On March 8, SVB announced a US$1.75bn capital raise to plug the gap caused by the sale of its loss-making bonds. This alerted customers to SVB’s financial challenges. They started withdrawing their deposits, which triggered a run on the bank.
MedTech growth strategies

Sudden hikes in interest rates may sound alarm bells for some traditional MedTechs that have pursued debt financing to acquire near adjacent companies rather than invest in R&D to develop disruptive technologies and innovative offerings. While R&D is a critical component of the industry, it is a complex and costly process, which often takes years to yield a product that can be marketed and generate revenue. By contrast, M&A activity allows companies to acquire existing products and technologies that have already been developed and tested, which reduces the risk and uncertainty of R&D. Further, with the industry becoming increasingly competitive, MedTechs need to achieve scale and market share to remain relevant. This can be achieved by the acquisition of near adjacencies, which allows acquirers to quickly expand their product portfolios, geographic reach, and customer base.

You might also like:

Have diversified medical technology companies blown their competitive advantage?


Can elephants be taught to dance?

 
The recent era of low interest rates and cheap money reinforced debt financed acquisitions as a growth strategy. Between 2011 and 2021, there were 2,365 M&A deals in the MedTech industry globally. However, to the extent that MedTechs focussed their acquisitions on near adjacencies, they may have missed out on acquiring innovative technologies positioned to reshape the industry over the next decade. This is because disruptive technologies often come from outside a company's core business and may not be immediately obvious to its leaders. Further, indebted companies facing high interest rates, might feel obliged to increase their revenues, which could result in them doubling down on cost cutting and optimizing their legacy products rather than investing in innovative R&D to drive revenue growth. Companies that adopt such business models could be at risk of having a dearth of technologies to drive future growth in a significantly more competitive healthcare ecosystem and challenging financial markets.
 
Disruptive technologies

The disruptive technologies we mention above shift the needle from hardware to software, from the needs of organizations to the needs of patients. While most of these are in their infancy, they all have the potential to transform healthcare in the next decade by providing new treatments for a variety of diseases and injuries, advancing drug development, enabling personalized medicine, reducing healthcare costs and improving medical training and surgical procedures. Let us explore these in a little more detail.

3D bioprinting

Three dimensional (3D) bioprinting is a relatively new technology, which involves the creation of 3D structures using living cells and holds promise for the future of regenerative medicine. The technology is an additive manufacturing process like 3D printing, which uses a digital file as a design to print an object layer by layer. However, 3D bioprinters print with cells and biomaterials, creating organ-like structures that let living cells multiply.

In 1999, a group of scientists at the Wake Forest Institute for Regenerative Medicine led by Anthony Atala, a bioengineer, urologist, and pediatric surgeon, created the first artificial organ with the use of bioprinting. Soon afterwards, bioprinting companies like Cellink (Sweden), Allevi (Italy), Regemat (Spain), and RegenHU (Switzerland) evolved. In 2010, Organovo, a biotech company founded in 2007 and based in San Diego, California, USA, introduced the first commercial bioprinter capable of producing functional human tissues that mimic key aspects of human biology and disease. In 2014, the company was the first to successfully engineer commercially available 3D-bioprinted human livers and kidneys. In 2019, researchers at Rensselaer Polytechnic Institute, New York, USA developed a way to 3D bioprint living skin, complete with blood vessels. Also in 2019, researchers at Tel Aviv University in Israel announced the creation of a 3D bioprinted heart using a patient's own cells. Today, 3D bioprinting is used to create a wide range of tissues and organs, including skin, bone, cartilage, liver, and heart tissue.
You might also like:
One of the most promising applications of 3D bioprinting is the creation of replacement organs using a patient's own cells. This could potentially eliminate the need for organ donors and reduce the risk of rejection. The technology also can be used to create complex tissues and structures, such as blood vessels, skin, and bone, which could be useful for patients with severe burns or injuries, as well as those with degenerative diseases. Further, 3D bioprinting can be used to create realistic models of human tissues for drug development and testing, which could help to reduce the cost and time associated with drug development, as well as reduce the need for animal testing. 3D bioprinting could enable the creation of customized implants and prosthetics that are tailored to a patient's unique anatomy.

According to findings of a 2023 report by MarketsandMarkets, in 2022, the global 3D bioprinting market was ~US$1.3bn, and expected to grow at a compound annual growth rate (CAGR) of ~21% and reach >US$3bn by 2027.
Robotics

Medical and surgical robotics have a relatively short history. The first robot-assisted surgical system, the PUMA 560, [Programmable Universal Machine for Assembly], was developed in 1985 by the engineering firm Unimation, and used to perform a neurosurgical biopsy. A decade later, in 1994, the FDA approved the first robotic system for laparoscopic surgery, the Automated Endoscopic System for Optimal Positioning (AESOP), which was superseded in 2001 by the ZEUS Robotic Surgical System. In the late 1990s and early 2000s, researchers began exploring miniature in vivo robots for minimally invasive procedures. In 2000, the first robotic system designed for spinal surgery, SpineAssist, was developed by Mazor Robotics, an Israeli company, which Medronic’s acquired in 2018. In the mid-2000s, researchers began developing robots for use in orthopaedic surgery. Perhaps the biggest influence on robotic surgery was made by  Intuitive Surgical, an American company founded in 1995. Intuitive developed the da Vinci Surgical System, which was approved by the FDA in 2000 and quickly became the most widely used surgical robot in the world. It has been used in millions of procedures across a wide range of specialities. Today, Intuitive Surgical is a Nasdaq traded company with a market cap of >US$84bn, annual revenues >US$6bn and >12,000 employees.
Medical and surgical robotics continue to evolve, with new technologies and applications being developed all the time. Such technologies offer the potential for more precise, efficient, and less invasive procedures, reduced operating times, improved accuracy, and fewer surgical complications. Demand for surgical robotics is increasing as are investments in robotic surgery companies and an increasing number of hospitals around the world are investing in robots. In the US, >250 hospitals use surgical robots for complex operations. Europe has also seen an increase in the number of hospitals that utilize robots for medical purposes. In 2016, there were over 7,000 medical robots in use globally, today there are >20,000.


You might also like:
According to a Verified Market Research report, in 2021 the global market for medical robots was ~US$11bn and is expected to reach ~US$35bn by 2030. Scientists are developing the next generation of microbots, which are small enough to seamlessly travel through the human body performing repairs.
 
Virtual reality

The use of virtual reality (VR) in healthcare has been growing rapidly in recent years, but its history only dates from the early 1990s, when the first VR applications in healthcare focused on pain management and distraction therapy. In the late 1990s and early 2000s, researchers began exploring the use of VR for a wider range of medical applications, including surgical simulation, medical education, and mental health therapy. In recent years, the technology has been used in pain management, physical therapy, treatment of phobias and anxiety disorders, and to improve quality of life for hospice patients. During the Covid-19 pandemic, VR was used to help healthcare workers train for and cope with the challenges of the pandemic, as well as to provide virtual healthcare visits to patients who were unable to receive in-person care.

VR healthcare start-ups have attracted attention from major players. For example, in February 2020, Medtronic acquired UK start-up Digital Surgery for >US$300m. Founded in 2013 by two former surgeons, Digital Surgery first made waves with an app to help train surgeons using a database of common procedures. It also developed VR software to train doctors as well as AI tools for surgeons in the operating room. OxfordVR is also a British VR start-up. Founded in 2017 by Daniel Freeman, Professor of Clinical Psychology at Oxford University, the company is focused on mental health applications and has successfully automated psychological therapy. Users are guided by a virtual coach instead of a real-life therapist, which allows the treatment to reach significantly more patients. Another notable VR start-up is Firsthand Technology, founded in 2016 and headquartered in California, USA.  The company's flagship product is a VR distraction therapy (VRDT) that offers immersive experiences designed to distract patients from the discomfort and anxiety associated with medical procedures. The company's offerings demonstrate the importance of addressing the psychological and emotional factors that impact health and well-being. In January 2020, Pear Therapeutics, a leader in digital prescriptions acquired Firsthand.

Over the next decade, expect VR to improve medical/surgical training by providing immersive, realistic simulations for medical students and health professionals, allowing them to practice procedures and techniques in a safe and controlled environment. In addition to helping patients to reduce pain and anxiety during medical procedures, VR can help to overcome barriers to care, such as distance and mobility, by providing virtual healthcare visits and remote monitoring of patients. Also, the technology is positioned to improve surgical planning. By providing surgeons with 3D models of patients' anatomy, allowing for more precise surgical planning, and reducing the risk of complications. Further, it can be used in physical therapy to improve patient engagement and motivation, leading to faster recovery times.

According to a 2021 Verified Market Research report, the VR healthcare market was valued at ~US$3bn in 2019, and is projected to reach ~US$57bn by 2030.
 
You might also like:

Should MedTechs follow surgeons or patients?

Biometric devices and wearables

Biometric devices and wearable technologies aim to empower people with granular data that leads to actionable healthcare insights. It gives people the ability to collect their own health data and report them in a digital format to physicians, thus eliminating the need for in-person appointments for simple check-ups. Insurers and providers have also bought into wearable devices, relying on data collected from them to inform personalized health plans. Corporations too have adopted them to encourage healthy habits among employees working from home.
The use of biometric devices and wearables in healthcare has a relatively short, but influential history. In the early 2000s, the first commercial monitors were introduced, which allowed athletes to track their heart rates during exercise. The technology can provide a wealth of data about a patient's health, allowing healthcare providers to tailor treatment plans to individual patients, monitor chronic disorders, detect changes in real-time and intervene expeditiously. Biometric devices and wearables can help to detect early signs of illness or disease and can help patients to take a more active role in their own health and wellness. The technology has the potential to reduce the cost of care by enabling remote monitoring, preventing hospital readmissions, and reducing the need for in-person visits. Further, it can provide researchers with large amounts of patient data to facilitate AI-driven research into disease prevention and treatment.
 
One successful biometric device company is Fitbit, which was founded in 2007 and is headquartered in San Francisco, California, USA. Fitbit offers a range of wearable devices that track physical activity, heart rate, sleep patterns, and other biometric data. The company’s products include smartwatches, activity trackers, and wireless headphones that integrate with its mobile app and web-based platform to provide users with personalized health and fitness insights. The company has developed partnerships with insurers and healthcare providers to use its products as part of employee wellness programmes. Since its founding, the company has sold >120m devices. In 2019, Fitbit was acquired by Google for US$2.1bn, which is a testament to the value of biometric data and the potential of wearables to transform healthcare.
 
The Apple Watch is the other market leader. Its first edition, launched in 2010, included features for tracking physical activity, heart rate, and other health metrics. An upgraded version, released in April 2015, helped to establish the health tracking market, which led to the mass adoption of wearable technologies. From the outset, the Apple Watch was conceptualized as a device that would help people stay connected in less invasive ways than with smartphones. Each iteration since its inception has increased the watch’s focus on improving health and wellbeing. In 2018, it was approved by the FDA as a medical device capable of alerting users to abnormal heart rhythms. Today there are ~150m Apple Watch users.
 
Another leader in the wearable sensor market is Abbott Laboratories, which provides a range of services for diabetes and cardiology. In November 2018, the company received FDA clearance for its FreeStyle Libre, a glucose reader smartphone app. Oura Health, a Finnish company founded in 2013, has launched a health wearable product in the form of a small ring that tracks activity, heart rate, body temperature, respiratory rate, and sleep data. As the technology continues to evolve, biometric devices and wearables are likely to play an increasing role in healthcare by helping people to participate in their own health and wellness, improving medical outcomes, and reducing healthcare costs.
 
According to findings from a 2019 ResearchandMarkets report, the wearable health technology industry is projected to see a CAGR >25% between 2020-2027, and annual sales are expected to reach ~US$60bn by 2027.
 
Digital Therapeutics
 
Digital therapeutics (DTx) are software-based interventions that aim to prevent, manage, or treat medical conditions by modifying patients’ behaviours. The therapeutics are delivered through mobile apps, virtual reality, or digital platforms. Their use in healthcare is growing, and the history of DTx can be traced back to the late 1990s when the first digital intervention for substance abuse was developed. In the early 2000s, a few digital interventions were introduced to manage chronic conditions such as diabetes and hypertension. However, it was not until the 2010s when the use of DTx started to gain momentum, driven by technological advances, the growing prevalence of chronic diseases, and the need for more cost-effective healthcare solutions.
 
In the November 2020 edition of Scientific America, DTx were ranked in the top-10 emerging technologies, which have demonstrated an ability to prevent and treat a variety of chronic conditions. In September 2017, Pear Therapeutics digital software programme, reSET, became the first FDA-approved DTx for substance use disorders (SUD) involving alcohol, cocaine, marijuana, and stimulants. According to the US Centers for Disease Control and Prevention (CDC) >40m Americans, ≥12 years presented with SUDs in 2022. In 2020, Pear received FDA clearance for Somryst, an insomnia therapy app. The company has a pipeline of DTx offerings for a wide range of conditions, including multiple sclerosis, epilepsy, post-traumatic stress disorder and traumatic brain injury. In 2020, the FDA approved EndeavorRx, which is produced by Boston based Akili Inc and is the first DTx delivered as a video game for children with attention deficit hyperactivity disorder (ADHD). Omada Health, is another digital therapeutics start-up, founded in 2011 and headquartered in California, USA, which provides personalized coaching and support to individuals with chronic health conditions.

Given that DTx are evidence-based and personalized, they can be tailored to meet the unique needs of each patient. This individualized approach can lead to enhanced patient outcomes and improved quality of life. DTx are often more cost-effective than traditional therapies, as they eliminate the need for in-person visits and reduce the need for expensive medications. This could help to lower healthcare costs. Digital therapeutics can be accessed from anywhere, any time and on any device, making them particularly useful for patients in remote or underserved regions. This could help to improve access to healthcare for millions of people. DTx can be integrated with other healthcare technologies, such as wearables, mobile health apps, and electronic health records, to provide a comprehensive approach to healthcare. This could lead to improved coordination of care and better health outcomes. Further, DTx could bring about a shift in treatment paradigms and change the way we approach chronic diseases: instead of relying solely on medications, patients could use digital therapeutics to manage their conditions and improve their overall health.

The FDA has created a new classification for digital therapeutics, which is likely to make it easier for more DTx solutions and services to obtain regulatory approval. In a 2020 survey of MedTech leaders by Deloitte, a consulting firm, 63% of respondents agreed that DTx will have a significant impact on the industry over the next 10 years. A report by Grand View Research, suggested that the global digital therapeutics market was valued at US$4.20bn in 2021, and is estimated to grow at a CAGR of ~26% from 2022 to 2030. 

 
Telemedicine

The practice of using telecommunications and information technologies to provide remote medical services, has a history dating back to the early 20th century. In 1924, the first radiologic images were transmitted by telephone between two towns in West Virginia, USA. In the 1950s and 1960s, the technology began to advance, and the first video consultation between a patient and a physician was conducted. In the 1970s, NASA began using telemedicine to provide medical care to astronauts in space. In 2001, the Indian Space Research Organization successfully linked large city hospitals and healthcare centres in remote rural areas. With the development of the internet in 1990s, remote healthcare exchanges became more widespread, particularly in rural areas where access to medical services were limited. In 1993, the American Telemedicine Association (ATA) was founded to promote the use of the technology. Since then, telemedicine has continued to evolve and expand.
The Covid-19 pandemic led to a surge in telemedicine usage as healthcare providers looked for ways to provide care while minimizing in-person contact. Based on a survey by McKinsey, a consulting firm; before the pandemic in 2019, ~11% of US patients used telehealth services. After COVID, that number had grown to ~50%. Some estimates suggest that during the height of the pandemic, the number of telemedicine appointments increased by 5,000%. According to McKinsey’s, 76% of US consumers report that they are interested in using telehealth in the future as a way to complement in-person physician visits.In August 2020, digital health history was made with the merger of two of the largest publicly traded virtual care companies Teladoc and Livongo. The former, a multi-billion-dollar market leader in telemedicine founded in 2002, and the latter, a multi-billion-dollar market leader in remote patient monitoring. The deal created a US$38bn entity, which was the market’s first full-stack virtual health company. Today, virtual health is a rapidly growing field, and combines virtual physician visits, remote patient monitoring, chatbots, algorithms, and analytics.
You might also like: 
Over the next decade, AI-powered telemedicine tools are likely to become more prevalent, helping to streamline and automate many aspects of the care delivery process, such as triage, diagnosis, and treatment plans. Remote patient monitoring technologies are likely to become more advanced and widespread, allowing healthcare providers to monitor patients’ health and vital signs remotely, which can improve outcomes and reduce hospitalizations. Expect healthcare providers to increasingly work as part of virtual care teams, collaborating with other health professionals, including specialists, to deliver care to patients in real-time, regardless of location. Telemedicine will continue to improve access to care, particularly for underserved populations such as those in rural and remote areas, and those with limited mobility or poor transportation options. The technology will also facilitate more personalized and patient-centred care, as providers will be able to tailor care plans to the specific needs and preferences of individual patients.

According to a report by MarketResearchFuture, the current global telemedicine market size is valued at ~US$67bn and is expected to reach >US$405bn by 2030, exhibiting a compound annual growth rate of >22%.

 
Takeaways

We have described six evolving software driven technologies positioned to significantly influence healthcare systems in the next decade. Note that all are software driven and focused on patients to make care more personalized and sensitive to specific needs of individuals. Such technologies are in stark contrast to traditional medical devices, which overwhelmingly are physical devices designed to serve hospitals, rather than individual patients. Such a focus can lead to a lack of innovation, higher costs for patients, lower quality of care, and less personalized treatment options. A shift towards technology optimized to deliver patient-centered care is necessary to improve the quality of healthcare and ensure that patients receive the best possible outcomes. From our analysis it is not altogether clear whether traditional MedTechs are well positioned to achieve this.
view in full page
  • Digital therapeutics and artificial intelligence (AI) techniques are increasing their influence on the medical devices industry and fuelling a shift of healthcare away from hospitals into peoples’ homes
  • This poses a challenge to traditional medical device companies (MedTechs) that solely focus on manufacturing physical devices for hospital-based episodic interventions
  • Some MedTechs are changing their business models and strategies, diverting their focus to patients, and adding digital therapeutic applications to their legacy offerings
  • Zimmer-Biomet and Stryker are MedTechs that have embraced digital therapeutics and AI
  • Stryker’s CEO advises other MedTechs to ‘lean-in on AI and don’t be sceptical’
 
Leaning-in on digital and AI
 
Rapidly growing digital therapeutic technologies are disrupting hospital-based healthcare and posing a challenge to those medical device companies that are slow to complement their legacy physical product offerings with patient centric digital solutions. Such technologies have the potential to enhance patient outcomes, reduce healthcare costs, and give providers access to new revenue streams. Today, digital solutions increasingly contribute to the prevention, management, and treatment of a wide range of diseases and health conditions. Their rapid growth is driven by advances in the behavioural sciences, artificial intelligence (AI) techniques and the increase in the consumer health wearables market, which is converging with the regulated medical devices market. This convergence facilitates care to move away from hospitals and into peoples’ homes.
 
In this Commentary
 
This Commentary describes how two decades ago a world-renowned surgeon and CEO of a large hospital group warned that digital therapeutics would disrupt healthcare and push a lot of hospital-based care to peoples’ homes. For years the medical devices industry did not pay too much attention to such warnings and continued to focus on manufacturing physical products for surgeons in hospitals. The Commentary describes two leading MedTechs - Zimmer-Biomet and Stryker – which have recently begun to reinvent themselves and embrace digital therapeutics and AI techniques expected to improve patient outcomes and reduce surgical inconsistencies. We briefly develop this thought process by suggesting how machine learning AI techniques might be employed to reduce the high failure rates of spinal surgeries. The Commentary describes the large and growing global market for digital therapeutics and prescription digital therapeutics, a large proportion of which are enabled by wearables and telehealth. The market for digital therapeutics is large enough and growing fast enough to pose a threat to traditional medical device companies that solely manufacture physical offerings and fail to develop digital solutions to improve patient journeys. Although some MedTechs neither have the resources nor the mindsets to develop digital solutions, it seems reasonable to suggest that, in the medium term, they will be obliged to acquire or develop such assets to remain competitive. However, achieving this will be challenging.
  
Early warnings of change

Over a decade ago, Devi Shetty, warned health professionals to prepare for care to become heavily influenced by digital therapeutics, which he argued would move a significant portion of care away from hospitals and into peoples’ homes. This warning had resonance because Shetty is a surgeon as well as being the founder and executive director of Narayana Health, one of India’s largest hospital groups. In an interview with HealthPad in 2012 he suggested that hospitals were becoming less relevant in a new, and rapidly growing digitally driven healthcare ecosystem. “Healthcare of the future will be dramatically different to that of the past. The future is not an extension of the past. In the future, chronic illnesses will be treated at home”, said Shetty and continued,The next big thing in healthcare is not going to be a magic pill, a faster scanner, or a new operation. It’s going to be digital therapeutics, which will dramatically change the way health professionals interact with patients. Every step of a patient’s care journey will be informed by software. This will make healthcare safer for the patient and shift most of hospital activities to the home. If a physician doesn’t have to operate on a patient, the patient can be anywhere, distance doesn’t matter”. Shetty repeated this argument at a 2022 Microsoft ‘Future Ready’ conference suggesting that, “95% of people who are unwell, don’t need an operation. All they need is medical intervention, which can be enabled by digital technology and telehealth and treated in the home”.
 
Leading MedTech companies reinventing themselves
 
Two decades after Shetty’s warning, the CEOs of Zimmer-Biomet and Stryker, respectively Bryan Hanson, and Kevin Lobo, have made substantial commitments to digital therapeutic solutions that improve patient outcomes, reduce surgical inconsistencies and extend treatment and monitoring to the entirety of patients’ journeys, much of which takes place in patients' homes. Medical device companies that fail to develop software solutions or link-up with providers of such technologies could risk losing market share to emerging competitors.

 
Zimmer-Biomet and digital therapeutics

Zimmer is a player in total knee arthroplasties, which involve replacing the knee joint with a prosthetic device that carries out similar functions as a person’s own knee. The surgery has become routine. In 2020, US physicians carried out ~1m total knee arthroplasties, and by 2030, ~2m such procedures are expected to be carried out annually in the US. In 2020, the global total knee replacement market was valued at ~US$7.8bn, expected to grow at a CAGR of >6%, and reach ~US$12.5bn by 2027.

In 2021, Zimmer and Canary Medical, a software company, which had developed an implantable digital therapeutic application, received approval from the US Food and Drug Administration (FDA) to market Persona IQ: the world’s first ‘intelligent’ total knee replacement. Zimmer’s traditional knee prosthesis is embedded with Canary’s technology to provide a range of automatic, reliable, and accurate data and analyses that facilitates remote monitoring and tracking of patients' post-operative progress long after they have left hospital.  Following this success, Hanson is directing a substantial percentage of Zimmer’s R&D spend on the development of digital therapeutic solutions, and Persona IQ is expected to be the first in a pipeline of intelligent joint prostheses.

 
Stryker and digital therapeutics

In a March 2022 interview, Stryker’s CEO, Kevin Lobo, stressed his ongoing commitment to increase his company’s digital therapeutic and AI capabilities. In 2021 Stryker acquired Gauss Surgical, which had developed Triton™, an AI-enabled app for real-time monitoring of blood loss during surgery. “After a mother gives birth”, says Lobo “it’s important to calculate how much blood she’s lost. Today, this quantification is very crude and rudimentary. Triton™ allows you to use your smartphone to accurately measure the amount of blood that is in sponges as well as cannisters. It can distinguish between different liquids and measure only the haemoglobin. This is critical to determining whether a mother needs a transfusion or not. You would be shocked, even here in the US, how often a mother doesn’t get a transfusion she needs or gets one she doesn’t need”.

In January 2022, Stryker acquired Vocera Communications for ~US$3bn. Vocera is a US Nasdaq traded company founded in 2000 that makes wireless communications systems for healthcare and has developed a digital platform, which helps connect caregivers and "disparate data-generating medical devices". The platform is used by >2,300 facilities throughout the world, including ~1,900 hospitals. Interoperability between the platform and >150 clinical and operational systems reduce health risks and enhance the consistency of surgical procedures, speeds up staff response times; and improves patient outcomes, safety, and affordability. According to Lobo, "Vocera will help Stryker significantly accelerate our digital therapeutic aspirations to improve the lives of caregivers and patients".

Lobo has made AI a shared service. Stryker employs ~200 software engineers that are using AI. “This we never had before at Stryker. AI is going to be a central core competence for our company. I can see that all our business units are going to be using AI within the next two to three years”, says Lobo, who expects AI inspired digital therapeutic applications to “lead to more consistent outcomes for our procedures”. According to Lobo this is “a big deal because today there are a lot of variations in surgical outcomes”.

AI and its potential impact on spinal surgery

Spinal surgery is a good example of significant inconsistencies in outcomes. Each year, ~7.6m spinal surgeries are performed globally, and ~1.2m in the US, where spinal fusions account for ~60% of all procedures. Although ~50% of primary spinal surgeries are successful,  ~30%, ~15%, and ~5% of patients only experience a successful outcome after the second, third, and fourth surgeries, respectively. Machine learning AI techniques applied to patients’ electronic medical records (EMR) and clinical data could potentially reduce this high failure rate by predicting what product and surgical procedure could produce an optimal solution for individual patients.
You might also like: 

If spine surgery fails to relieve low back pain why is it increasing?


Robotic surgical spine systems, China, and machine learning
Let us briefly explain. Machine learning, a subfield of AI, is the capability of a machine to imitate intelligent human behaviour. It is the process of using mathematical models of data to help a computer to learn and adapt without following explicit human instructions. Machine learning employs algorithms (a set of instructions for solving a problem) to identify patterns in large data sets, potentially comprised of multiple sources, and then uses these patterns to create a predictive model. With increased training on more data, the results of a machine learning algorithm may become more accurate, much like how humans improve with practice. Once this point is reached, regulatory approval for the algorithm can be applied for under the FDA’s category of “software as a medical device”. Once approved, the algorithm may be used to help reduce the high failure rates of spinal surgery.
 
The digitalization of healthcare
 
MedTech leaders should be mindful of the impact that digital therapeutics is having on their industry, which goes far beyond embedding legacy physical offerings with sensors. Digital therapeutics is a rapidly growing healthcare modality, predicated upon scientific advances in the behavioural sciences and AI techniques, that help individuals to form habits, which improve their health, reduce healthcare costs and boosts productivity. Such software tools increasingly are used for the management and prevention of a range of debilitating and costly chronic conditions, including mental health challenges, substance abuse disorders, opioid-induced conditions, cancer, cardiovascular diseases, metabolic disorders, respiratory conditions, and inflammatory diseases. Chronic disease is a public health emergency. In the US, six in ten citizens are living with at least one chronic disorder. Not only are such conditions the leading cause of hospitalizations, disability, and death, but their total annual cost to the US exchequer, which includes lost economic productivity, is ~US$3.7trn.
 
The market for digital therapeutics is driven by a combination of different factors, including: technological advances, particularly consumer wearables (such as the Apple Watch and Fitbit apps, see below), the high penetration levels of mobile telephony, the growth of telehealth, the increasing demand from consumers to take more control of their health, aging populations, the large and escalating incidence of preventable chronic diseases, the need to control healthcare costs, and rising investments in digital therapeutics. According to Statista, a business data platform, in 2021 the number of people globally using digital therapeutic applications reached ~44m. Almost double the number of 2020. By 2025 the number of users is expected to reach >362m, and this only includes devices that have sought validation in clinical trials. The global digital therapeutics market is growing at a CAGR of ~31% and is projected to reach ~US$13bn by 2026, up from ~US$3.4bn in 2021.
 
An advantage of digital health modalities is their ability to deliver continuous personalized care and bridge large care gaps created by shortages of specialized health professionals. In the US, for instance, there are ~6,500 specialist physicians in full-time clinical practice to treat diabetes (endocrinologists), but there are ~27m Americans living with the condition. Similar health gaps occur in other common disease states. In developing economies, care gaps are even wider. For example, India has a chronic shortage of doctors and nurses and has ~77m people living with diabetes and ~55m people living with cardiovascular disease. The latter kills ~5m Indian citizens each year. India, like many other Asian countries, has chosen to deal with care gaps by establishing itself as a major presence in the digital health economy. By several key metrices, from internet connections to app downloads, both the volume and the growth of India’s digital economy now exceeds those of most other countries. Expect this shift to increasingly influence corporations looking to enter and extend their franchises in large and rapidly growing medical devices markets in developing economies. 

 
Cybersecurity challenges

Headwinds for digital therapeutic applications, particularly in Western democracies, include challenges of informed consent to use, safety and transparency, algorithmic fairness and biases, and data privacy. Digital therapeutic applications tend to be more vulnerable to cyberattacks than traditional medical devices, which are manufactured according to strict protocols by a handful of regulated manufacturing partners. By contrast, digital applications often rely on third-party software, which may be less rigorous than the usual medical device standards. Cybersecurity threats to digital therapeutics include data theft, identity disclosure, illegally accessing data, corruption of data, loss of data, and violation of data protection. These risks are accentuated by the fact that the modality is predicated upon the continuous monitoring of patients’ vital signs and increased connectivity between physicians, providers, payers, and patients and breaches can occur at various points along the path of data movement. Risk mitigation includes encryption protocols and the ability to control data access and data integrity. An indication of how quickly the US policy environment around cybersecurity is changing is in March 2022, the US Senate unanimously passed legislation, which would usher in sweeping changes to the federal legal landscape relating to cybersecurity and mandate companies to report damaging hacks and ransomware payments to the government.
 
Prescription digital therapeutics

Another indication of the growing significance of digital therapeutics is a recent US policy push to establish an equivalence between some wearable healthcare solutions and prescription drugs and medical devices. On 10 March 2022, two US senators, Catherine Cortez Masto, D-Nevada, and Todd Young, R-Indiana, introduced legislation to expand Medicare and Medicaid coverage to include prescription digital therapeutics. Medicare is a federally run US medical insurance programme covering ~64m citizens >65 and younger disabled people. Medicaid is a government assistance programme, funded by both federal and state governments, but run by individual states and covers the medical expenses of ~75m Americans on low incomes and with limited resources. This is significant because of the vast number of individuals covered by these health insurances and the fact that the US regulatory hurdle is one of the toughest in the world. Prescription digital therapeutics fall under the FDA category of “software as a medical device” and are subject to the same stringent requirements as drugs and medical devices, and must demonstrate evidence of clinical effectiveness, safety, and quality. After that they require a prescription for use, following a consultation with a doctor.
 
The bill would standardize US reimbursement codings for prescription digital therapeutics, which is expected to incentivize American doctors to increase prescribing them. This would not only facilitate greater access to a wide range of digital therapies for >44% of Americans receiving state healthcare support but potentially create a precedent for US private health insurance companies to increase their coverage of prescription digital therapeutics. This would significantly help to propel the modality into mainstream healthcare.



You might also like:

Nonadherence to prescribed medication: an orphan killer epidemic



Will behavioural techniques improve breast cancer outcomes?


 
The future of health wearables

In June 2020, as the COVID-19 crisis escalated, the FDA expanded its guidance for non-invasive patient-monitoring technologies, including the Apple Watch’s ECG function. In 2021, ~34m Apple Watches were sold worldwide; up from ~22.5m in 2018. In addition to smartwatches, there is a wide range of intelligent wearables that monitor your vital signs in real time, promote self-management of chronic conditions, help people to engage with their own health and incentivize them to change their behaviour to improve their health and lifestyles. Thus, digital therapeutic applications have the potential, among other things, to slow the development of chronic disorders and reduce hospital visits and readmissions. The size and growth rate of the wearable health technology market influences the decisions of insurers, employers, health providers and producers. For example, insurers use data from wearables to adjust their premiums,  corporates derive benefits from their employees using wearables, which include healthier company cultures, a reduction in employee turnover, an increase in workplace safety and enhanced efficiency.  
In the US, consumers' use of wearables increased from 9% to 33% in four years as of 2021. The use of wearables is likely to increase as they become more conventional, connectivity expands, and more accurate sensors are developed. Such developments are likely to provide further incentives for insurers and employers to use wearables to develop healthier lifestyles to boost profitability and cut costs. According to Gartner, a technological research and consulting firm, in 2021 worldwide user spending on wearable devices was ~ US$82bn, ~18% increase from the previous year. This seems reflective of consumers, encouraged by the COVID-19 pandemic, becoming more conscious about their health, wellbeing, and changes to their lifestyles. According to a 2021 Deloitte’s survey, ~58% of US households own a smartwatch or fitness tracker, and ~39% of Americans personally own a smartwatch or fitness tracker. ~14% of consumers have bought their fitness devices since the start of the COVID pandemic in 2020, and activities such as counting steps, workout performance, heart health, and sleep quality monitoring are amongst the most popular activities.
 
Telehealth

Another factor driving the shift of care away from hospitals to peoples’ homes is the development of telehealth. The COVID-19 pandemic caused telehealth usage to surge as consumers and providers sought ways to safely access and deliver healthcare. According to the US Centers for Disease Control and Prevention (CDC), by late March 2020, telehealth had increased >154% compared to the same period in 2019.  Since the peak of the COVID-19 pandemic, telehealth has become a permanent part in the delivery of healthcare. The telehealth market is expected to rise to >US$397bn by 2027 from US$42bn in 2019. According to Devi Shetty the history of healthcare will be written in two sections, BC, and AC: before COVID and after COVID.COVID-19 disrupted and transformed healthcare and forced inward looking healthcare professionals to rapidly change and adopt digital therapeutic technologies”, says Shetty.
 
The legacy of the COVID-19 related surge in digital therapeutics is an opportunity to make permanent hybrid care modalities created during the pandemic. The foundations for the opportunity are described in a 2021 McKinsey research report, which suggests that the pandemic, (i) accelerated the growth and acceptance of telehealth, which “stabilized at ~38X higher than before the crisis”, (ii) improved the attitudes of consumers and providers towards telehealth, (iii) made permanent some regulatory changes put in place during the pandemic (for example, Medicare and Medicaid’s expansion of reimbursable telehealth codes introduced in 2021 for US physician fee schedules, which have been made permanent), (iv) fuelled venture capital’s digital health investments, and (v) drove the adoption of digital therapeutics across a wide range of disease states. 
Shift in mindset

In the changing healthcare ecosystem, a primary strategic objective for MedTech leaders is to define relevant planning cycles and efficaciously manage from one cycle to the next. The current planning cycle in the medical devices industry is influenced by data, AI techniques, and patient centric digital therapeutic solutions. To effectively manage this cycle, MedTechs might consider copying Zimmer and Stryker and acquire complementary digital therapeutic assets and capabilities. Adapting M&A knowhow and experience to make such acquisitions is an option but not without risk.
You might also like:

Can elephants be taught to dance?


MedTech must digitize to remain relevant
This is because enterprises with digital assets and capabilities have different cultures, development practices, reimbursement policies and data management policies and practices compared to traditional medical device companies. It seems reasonable to suggest that poorly managed acquisitions could result in MedTechs ending up with a graveyard of unfulfilled digital technologies. To reduce this risk industry leaders might consider following Stryker’s example and recruit experienced digital and AI specialists, and make them a core competence.
 
Takeaways

In the near-term, disruptive digital technologies present both challenges and opportunities for medical device companies. Zimmer and Stryker have started to reinvent themselves through parallel efforts to digitize their legacy businesses, acquire complementary digital assets, and make AI a core competence. However, many MedTechs have not changed their business models and still focus R&D on making small improvements to existing product offerings. Corporate leaders considering changing their business models and strategies should be mindful that digital and AI assets and capabilities with the potential to create disruptive growth need to be protected from unnecessary bureaucratic burdens common in many traditional companies. To survive and prosper, managers might consider rethinking their operating models for innovation-led growth. The most effective models appear to combine a strategic process with multiple mechanisms for driving innovation development and scale-up. Stryker’s shared service of AI expertise is one example of a contrived core “capability” expected to transform legacy devices into growth engines that could help secure the company’s long-term survival. MedTech CEOs might do well to follow Lobo’s advice and, “lean-in on AI and do not be sceptical.”.
view in full page