Directory:
Tags:
- Over the past decade MedTech valuations have outperformed the market without changing its business model
- The healthcare ecosystem is rapidly changing and MedTech is facing significant headwinds which require change
- MedTech’s future growth and value will be derived from data and smart analytics rather than manufacturing
- MedTech leaders will be required to leverage both physical and digital assets
Increasing MedTech’s future growth and value
Over the past decade, the medical device (MedTech) industry has enjoyed relatively high valuations and outperformed broader market indices without changing its manufacturing business model. Some MedTech leaders suggest that because the industry’s product offerings are essential, demand for them is increasing as populations grow and age, so unlike other industries, MedTech is immune to market swings and its asset value will continue to increase. As a consequence of this mindset, MedTech has been reluctant to change and slow to develop digitization strategies. Notwithstanding, digitization is an in-coming tide and positioned to impose a step-change on the industry. Future MedTech leaders will need to derive increased growth and value from digitization and emerging markets while improving the efficiency of their legacy manufacturing business and meeting quarterly earnings’ targets.
According to a 2018 report by the consulting firm Ernst & Young,“Stagnant R&D investment, low revenue growth and slow adoption of digital and data technologies suggest that entrenched MedTech companies are overly focused on short-term growth, even as the threat of large tech conglomerates entering the space grows larger, which, in addition to the changing global healthcare ecosystem, threatens future revenue growth".
According to a 2018 report by the consulting firm Ernst & Young,“Stagnant R&D investment, low revenue growth and slow adoption of digital and data technologies suggest that entrenched MedTech companies are overly focused on short-term growth, even as the threat of large tech conglomerates entering the space grows larger, which, in addition to the changing global healthcare ecosystem, threatens future revenue growth".
In this Commentary
This Commentary suggests that to create future growth and value, MedTech will have to (i) leverage data generated by medical devices, patients, payers and healthcare providers to develop clinical insights and trend analysis, which are expected to significantly improve patient outcomes and reduce costs, and (ii) substantially increase its share of the large and rapidly growing emerging markets. We suggest that there is a significant relationship between MedTech’s digital capacity and competences and its ability to increase its share of emerging Asian markets. But first we briefly describe the MedTech industry and its traditional markets and draw attention to some concerns, which include the relative low rates of top-line growth, stagnant R&D and share buybacks, M&A slowdown, giant tech companies entering the healthcare market, and challenges to recruit and retain millennials with natural digital skills and abilities.
The medical device industry
Concern # 1: Reduced growth rates
Population growth and aging
Concern # 2: Stagnate R&D spend and share buybacks
The medical device industry
The MedTech industry designs, manufactures and markets more than 0.5m different products to diagnose, monitor and treat patients. These include wearable devices such as insulin pumps and blood glucose monitors, implanted devices such as pacemakers and metal plates, and stationary devices that range from instruments to sophisticated scanning machines. Medical devices can be instrumental in helping healthcare providers achieve enhanced patient outcomes, reduced healthcare costs, improved efficiency and new ways of engaging and empowering patients. The principal business model employed by the industry is to manufacture innovative products relatively cheaply and sell them expensively in wealthy developed regions of the world; predominantly North America, Europe and Japan; which although representing only 13% of the world’s population account for 86% of the global MedTech market share. This premium pricing model is predicated upon doctors’ and health providers’ belief that MedTech products are of superior quality and safety. Notwithstanding, as eye-watering healthcare costs escalate, providers and regulators demand better evidence of clinical and economic value to justify the pricing and use of MedTech products. Over the next five years, the global MedTech industry is expected to grow at a compound annual growth rate of between 4% and 5.6% and reach global sales of some US$595bn by 2024.
Concern # 1: Reduced growth rates
Since the worse post-war recession ended in 2009, MedTech asset valuations have outperformed the market. Notwithstanding, of increasing concern is the slowdown of the industry’s revenue growth rates to single digits. The industry's aggregate revenue grew to US$379bn in 2017, an annual average industry growth rate of 4%, which now appears to be the new normal, and is significantly lower than the average annual growth rate of 15%, which the industry enjoyed between 2000-2007. The reduction in top-line growth rates is largely attributed to the world’s growing and aging population and the consequent growth in the incidence rates of chronic conditions, which increases the burden on overstretched healthcare budgets and intensifies pressure on MedTech’s to reduce their prices.
Population growth and aging
The aging population is driven by improvements in life expectancy. People are living longer and reaching older ages as fertility decreases and quality healthcare increases. People are having fewer children later in life. Some 8.5% of the global population (617m) have ages 65 and over. This is projected to rise to nearly 17% by 2050 (1.6bn). The number of Americans aged 65 and older is projected to more than double from 46m today to over 98m by 2060 – from 15% to 24% of the total US population. Around 18% of the UK population were aged 65 years or over in 2017, compared with 16% in 2007. This is projected to grow to 21% by 2027.
Concern # 2: Stagnate R&D spend and share buybacks
In addition to relatively low revenue growth rates, MedTech R&D spend has stagnated over the past decade despite the need for companies to develop new and innovative product offerings, which drive top-line sales. Over the same period, MedTech returned more cash to shareholders in the form of share buybacks and dividends (US$16.4bn) than it spent on R&D.
To the extent that share buybacks extract, rather than create value why are they popular? One suggestion is that because share incentive plans represent a significant portion of executive compensation, share buybacks make it easier for executives to meet earning-per-share (eps) targets by reducing the number of shares, in the 1970s, share buybacks were effectively banned in the US amid concerns that executives might use them to manipulate share prices. However, in 1982 the US Securities and Exchange Commission (SEC) lightened its definition of stock manipulation, and share buybacks became popular again.
To the extent that share buybacks extract, rather than create value why are they popular? One suggestion is that because share incentive plans represent a significant portion of executive compensation, share buybacks make it easier for executives to meet earning-per-share (eps) targets by reducing the number of shares, in the 1970s, share buybacks were effectively banned in the US amid concerns that executives might use them to manipulate share prices. However, in 1982 the US Securities and Exchange Commission (SEC) lightened its definition of stock manipulation, and share buybacks became popular again.
|
|
|
|
Directory:
Tags:
- Experts have called for the worldwide eradication of cervical cancer, but this is not likely to happen for a long time
- Significant progress has been made to eliminate cervical cancer in developed countries
- The overwhelming burden of cervical cancer falls disproportionately on women in low- to middle-income countries (LMIC)
- LMIC have relatively low levels of awareness of cervical cancer, patchy prevent programs and limited treatment options
- Over 80% of cervical cancer cases and deaths occur in LMIC
- Cervical cancer is the fourth most common cancer in women worldwide
- In 2018 there were an estimated 680,000 new cases and 311,000 deaths from the disease worldwide
- Cervical cancer is caused by sexually acquired infection from high-risk strains of the human papilloma virus (HPV)
- The majority of women will be infected with HPV at some point in their life
- HPV also causes genital warts and cancers of the head and neck and is also linked to cancers of the anus, vulva, vagina, penis and oropharynx
- HPV vaccines protect against 70% of cervical cancers and about 90% of genital warts
- Regular screening is also recommended to reduce the incidence of cervical cancer
Challenges to eradicate cervical cancer globally
Cervical cancer is a killer disease, which only affects women. It affects women of all ages from schoolgirls to grandmothers, but it is significantly more prevalent between the ages of 30 and 45.
The cervix, also known as the neck of the womb, connects a woman's womb and her vagina.
Lancet study raises hope of eradicating cervical cancer
Research findings published in the June 2019 edition of The Lancet suggest that HPV vaccination, which has been available to adolescent girls in wealthy developed countries since 2007, has led to a dramatic reduction in the number of HPV infections, precancerous cervical lesions and anogenital warts and provides hope of eradicating cervical cancer. Marc Brisson, Professor in the Department of Social and Preventative Medicine, Laval University, Canada, who led the research - a meta-analysis of over 65 former studies covering 60m people - said: "We will see reductions [in cervical cancer] in women aged 20-30 within the next 10 years, and eradication of the disease [defined as <4 cases per 100,000] might be possible if sufficiently high vaccination coverage can be achieved and maintained". Over the past two decades, the incidence rates of cervical cancer in developed countries have fallen significantly, and between 1955 and 1992, the incidence rate of the disease decreased 70% in the US. These falls are attributed to effective nationwide screening.
Epidemiology
Cervical cancer is the fourth most common cancer in women worldwide and second for women between 15 and 44. In 2018 there were an estimated 680,000 new cases and 311,000 deaths from the disease worldwide. The overwhelming majority of cases are caused by two specific strains of the human papilloma virus (HPV). HPV infection and early cervical cancer typically do not present noticeable symptoms, and cervical cancer may take 20 years or longer to develop after an HPV infection. The overwhelming global burden of the disease falls disproportionately on women in low- to middle income countries (LMIC). There is a significant and growing gap in the incidence and mortality rates of cervical cancer between developed nations and LMIC. Despite international efforts, it seems unlikely that this gap will be narrowed in the medium term.
In this Commentary
This Commentary describes the spread of HPV, the vaccines developed to prevent infection from specific high-risk strains of the virus and recommended vaccination regimens. We describe the nature and significance of complementary screening programs and present evidence to suggest that women who fail to get screened are more likely to contract cervical cancer in later life than women who are screened. HPV vaccination programs are more prevalent in developed economies and are associated with a significant reduction in the incidence rates of cervical cancer. This suggests that the battle to eliminate cervical cancer is being won in some wealthy developed nations. Australia is positioned to become the first country in the world to eliminate cervical cancer. Despite substantial global efforts to reduce the incidence rates of cervical cancer, the gap in preventing, diagnosing and treating the disease between wealthy nations and LMIC is significant and growing. We conclude by suggesting that to eradicate cervical cancer, screening and prevention programs must be linked to easily accessible and effective treatment.
The spread of HPV
Over 70% of cervical cancer is caused by two high-risk strains of HPV. Most women will contract HPV at some stage during their life, but this usually clears-up on its own without the need for any treatment. HPV is most commonly spread during vaginal, anal or oral sex. The virus can be passed even when an infected person has no signs or symptoms. If you are sexually active you can get HPV, even if you only have sex with one partner. Notwithstanding, the risk increases with the number of new sexual partners and their sexual histories. You also can develop symptoms years after you have sex with someone who is infected. This makes it hard to know when you first became infected.
HPV vaccines
The US Food and Drug Administration (FDA) has approved three vaccines, which prevent infection with disease-causing HPV types. These are Gardasil, Gardasil 9 and Cervarix. All three vaccines prevent infection with HPV types 16 and 18 in women who have not already been infected by these types. These are two high-risk HPV’s that cause about 70% of cervical cancers and an even higher percentage of some of the other HPV-caused cancers. Gardasil also prevents infection with HPV types 6 and 11, which cause 90% of genital warts. Gardasil 9 prevents infection with the same four HPV types, plus five additional cancer-causing types.
About 79m Americans are currently infected with HPV, with roughly 14m people becoming newly infected in the US each year. In the UK, HPV is present in one in three people and 90% of individuals will come into contact with some form of the virus in their lifetime. About 80% of sexually active people are infected with HPV at some point in their lives, but most people never know they have the virus. Whitfield Growdon, a surgical oncologist at the Massachusetts General Hospital and professor at the Harvard University Medical School describes the HPV vaccination as, “one of the most meaningful interventions for reducing cervical cancer”; see video below.
About 79m Americans are currently infected with HPV, with roughly 14m people becoming newly infected in the US each year. In the UK, HPV is present in one in three people and 90% of individuals will come into contact with some form of the virus in their lifetime. About 80% of sexually active people are infected with HPV at some point in their lives, but most people never know they have the virus. Whitfield Growdon, a surgical oncologist at the Massachusetts General Hospital and professor at the Harvard University Medical School describes the HPV vaccination as, “one of the most meaningful interventions for reducing cervical cancer”; see video below.
Who should get vaccinated?
All girls and boys aged between 11 and 12 should get the HPV vaccination. Every year in the US, over 13,000 males contract cancers caused by HPV. Catch-up HPV vaccines are recommended for girls and women through the age of 26, and for boys and men through the age of 21, if they did not get vaccinated when they were younger. HPV vaccination is also recommended for the following people, if they did not get vaccinated when they were younger: (i) young men who have sex with men through the age of 26, (ii) young adults who are transgender through the age of 26 and (iii) young adults with certain immunocompromising conditions (including HIV) through the age of 26.
Early cervical cancer is asymptomatic
Because early cervical cancer is asymptomatic, it is important for women to have regular Papanicolaou (Pap) smears - also called Pap tests - to detect any precancerous changes in the cervix that might lead to cancer. This is in addition to the HPV vaccination. In England women are invited to have Pap smears every three years between the ages of 25 and 49, when rates of cervical cancer are at their peak, and every five years between 50 and 65. Other international screening guidelines recommend that women aged 21 to 29 have a Pap smear every three years. Women aged 30 to 65 are advised to continue having a Pap test every three years, or every five years if they also combine it with an HPV DNA test. Women over 65 can stop testing if they have had three consecutive normal Pap tests, or two HPV DNA and Pap tests with no abnormal results.
The HPV DNA test determines the most likely cause of cervical cancer by looking for pieces of DNA in cervical cells and is recommended for women over 30 and not for women under 30. This is because women in their 20s tend to be more sexually active and therefore are more likely (than older women) to have an HPV infection that will go away on its own. Results of an HPV DNA test carried out on a woman in her 20s is not as significant as in and older woman and also may be confusing. The HPV DNA test can also be used in women who have slightly abnormal Pap test results to find out if they might need more testing or treatment.
The expansion of screening programs for cervical cancer in LMIC is only part of the answer to closing the gap with developed nations and eradicating cervical cancer globally. It is imperative that screening is linked to increased access to effective treatment for women with cervical cancer, particularly in its early stages when it is still curable. In LMIC there is often not only reduced access to preventive HPV vaccines and screening, but limited access to treatment and trained personnel. Notwithstanding, there is evidence to suggest that, in LMIC less-invasive and less–resource-intensive treatment options can be effective and are increasingly being made available.
The HPV DNA test determines the most likely cause of cervical cancer by looking for pieces of DNA in cervical cells and is recommended for women over 30 and not for women under 30. This is because women in their 20s tend to be more sexually active and therefore are more likely (than older women) to have an HPV infection that will go away on its own. Results of an HPV DNA test carried out on a woman in her 20s is not as significant as in and older woman and also may be confusing. The HPV DNA test can also be used in women who have slightly abnormal Pap test results to find out if they might need more testing or treatment.
The Pap smear/test
The Pap smear or Pap test is a method of cervical screening used to detect potentially precancerous and cancerous processes in your cervix. During the routine procedure, cells from your cervix are gently scraped away and then examined for abnormal growth. Abnormal findings are often followed-up by more sensitive diagnostic procedures and if warranted, by interventions that aim to prevent progression to cervical cancer. Detecting cervical cancer early with a Pap smear significantly increases the chances of a cure. A Pap smear can also detect changes in your cervical cells, which suggest you might develop cancer in the future. In the two videos below Growdon describes the Pap smear and other tests for diagnosing cervical cancer.
Women failing to have the Pap test are 6-times at greater risk of cervical cancer
There is evidence to suggest that women over 50 who fail to have a regular Pap smear have a much higher risk of developing cervical cancer compared with other women the same age who have a history of regular screening. Research carried out by Cancer Research UK and reported in 2014 investigated the utility of regular cervical cancer screening after 50, and whether 64 was an appropriate age to stop screening and concluded “yes” and “yes”. The study compared the screening history of 1,341 women between 65 and 83 in England and Wales who were diagnosed with cervical cancer over a five-year period, with 2,646 women of the same age without the disease. Findings suggest that women who did not attend screening tests were six times more likely to develop cervical cancer between 65 and 83 compared with women that did.
Australian the first country to eradicate cervical cancer
Australia is well positioned to become the first country in the world to eradicate cervical cancer. This is largely due to national vaccination and screening programs, which could see the disease effectively eliminated as a public health issue within the next two decades. In 2007, Australia launched a national publicly-funded school immunisation program to reduce HPV, which complemented a national cervical cancer screening program that was launched in the 1990s. These have been shown to reduce the incidence of cervical cancer and significantly increase early diagnosis when the disease is curable.
A research paper about the Australian initiative published in the January 2019 edition of The Lancet Public Health concludes that, “the annual incidence of cervical cancer in Australia is likely to decrease to fewer than six new cases per 100 000 women by 2020 (range 2018–22) and to fewer than four cases per 100 000 women by 2028 (2021–35). The annual incidence of cervical cancer could decrease to one new case per 100 000 by 2066 (2054–77) if the existing HPV-based screening program continues in cohorts who are offered the nonavalent vaccine”; [a nonavalent vaccine works by stimulating an immune response against nine different antigens, such as nine different viruses or other microorganisms]. According to Suzanne Garland, Professor and Clinical Director of Microbiology and Infectious Diseases at the Royal Women’s Hospital, Melbourne, Australia, who led the research, “within 40 years the number of new cases of cervical cancer [in Australia] is projected to drop to just a few”.
A research paper about the Australian initiative published in the January 2019 edition of The Lancet Public Health concludes that, “the annual incidence of cervical cancer in Australia is likely to decrease to fewer than six new cases per 100 000 women by 2020 (range 2018–22) and to fewer than four cases per 100 000 women by 2028 (2021–35). The annual incidence of cervical cancer could decrease to one new case per 100 000 by 2066 (2054–77) if the existing HPV-based screening program continues in cohorts who are offered the nonavalent vaccine”; [a nonavalent vaccine works by stimulating an immune response against nine different antigens, such as nine different viruses or other microorganisms]. According to Suzanne Garland, Professor and Clinical Director of Microbiology and Infectious Diseases at the Royal Women’s Hospital, Melbourne, Australia, who led the research, “within 40 years the number of new cases of cervical cancer [in Australia] is projected to drop to just a few”.
The two worlds of cervical cancer
Global efforts to reduce the incidence rates of cervical cancer have focused on HPV vaccination and the Pap test. Although experts are optimistic about eliminating cervical cancer in developed nations, which have advanced healthcare systems and extensive HPV vaccination, screening and treatment programs, they are significantly less sanguine about eradicating the disease in LMIC where there are relatively low levels of awareness of cervical cancer, a dearth of preventative strategies, limited expertise and a narrow band of treatment options. This results in the disease being identified late when it is at an advanced stage, which leads to higher rates of morbidity and death. Indeed, 85% of all cases and cervical cancer deaths occur in LMIC, where the death rate is 18 times higher than in wealthy nations.
Cervical cancer a challenge for LMIC
The gap in preventing, diagnosing and treating cervical cancer between wealthy nations and LMIC is described in a paper published in the November 2017 edition of Gynecologic Oncology Reports and suggests that, “Developing countries continue to bear a disproportionate percentage of the global cervical cancer burden. Investigations into the growing gap in incidence and mortality between developed nations and LMIC have cited persistent financial, infrastructural and educational limitations as key drivers. Pervasive lack of access to both preventative and definitive care has left a substantial portion of cervical cancer patients with minimal options for disease management”.
WHO strategy to eliminate cervical cancer
Recognising this disparity, in 2018, the Director-General of the World Health Organization (WHO) announced a call to action for the eradication of cervical cancer as a public health problem. In January 2019, the Executive Board of the WHO requested the Director General to develop a draft strategy to accelerate cervical cancer elimination, with clear targets for the period 2020 - 2030.
Vaccination and screening must be linked to effective therapies
The expansion of screening programs for cervical cancer in LMIC is only part of the answer to closing the gap with developed nations and eradicating cervical cancer globally. It is imperative that screening is linked to increased access to effective treatment for women with cervical cancer, particularly in its early stages when it is still curable. In LMIC there is often not only reduced access to preventive HPV vaccines and screening, but limited access to treatment and trained personnel. Notwithstanding, there is evidence to suggest that, in LMIC less-invasive and less–resource-intensive treatment options can be effective and are increasingly being made available.
Late presentation of cervical cancer in LMIC
Women from LMIC generally seek treatment for cervical cancer only after the presentation of symptoms when the disease is advanced and challenging to treat. Also, they often lack awareness of the disease and ways to prevent it. Further, in some regions of the world, cultural norms and myths about cervical cancer pose additional barriers to prevention. Despite such obstacles, the disease can be prevented at low cost by healthcare providers employing relatively simple techniques to screen women for precancerous conditions and treat abnormal tissue early. Among the most promising low cost and low-tech screening alternatives to the Pap smear, is visual screening, which only requires either simple vinegar or iodine solutions and the eye of a trained healthcare provider to spot abnormal tissue.
Screening linked to effective therapy
Increasingly, these simply tests are being linked with effective treatment. Increasingly, in LMIC relatively cheap and simple therapies are being used to either destroy or remove abnormal cervical tissue, depending on the severity, location and size of the affected area. Two such procedures include cryotherapy and loop electrosurgical excision procedure (LEEP). The former uses extremely low temperatures to destroy abnormal tissue and requires no electricity. The latter involves using a thin wire to remove lesions in the affected area. While this procedure requires more medical equipment than cryotherapy, it allows tissue to be removed for analysis, reducing the possibility that advanced cancer will go unnoticed. Although many LMIC have had cervical cancer prevention programs and simple treatment strategies in place for some time, some have failed to reduce death rates of the disease.
Radiotherapy and cervical cancer in LMIC
Research findings published in the May 2019 online edition of The Lancet Oncology suggest that the availability of radiotherapy in LMIC (where gross national income is <US$12,000 a year) would generate millions of productive life years and billions of dollars in economic benefits for the patients' families and communities. The study suggests that implementing a 20-year strategy for radiotherapy to treat cervical cancer in LMIC between 2015 and 2035, in parallel with an HPV vaccination program, would save the lives of some 9.4m women and provide a net benefit to economies of US$151.5bn as a direct result of women living longer and more productive lives.
According to Danielle Rodin, lead author and Radiation Oncologist at the Princess Margaret Cancer Centre, University of Toronto, Canada, "Vaccination is hugely important, but we can't neglect the millions of women who are contracting cervical cancer and dying in pain without access to treatment. These are women who have curable cancers: even advanced cervical cancer can be cured with radiotherapy. The possibility exists to make this treatment universally available". Radiation therapy makes small breaks in the DNA inside cells. This stops cancer cells from growing and dividing and causes them to die. Unlike cisplatin therapy, [an anti-cancer ("antineoplastic" or "cytotoxic") chemotherapy], which usually exposes the whole body to cancer-fighting drugs, radiation therapy is usually a local treatment.
According to Danielle Rodin, lead author and Radiation Oncologist at the Princess Margaret Cancer Centre, University of Toronto, Canada, "Vaccination is hugely important, but we can't neglect the millions of women who are contracting cervical cancer and dying in pain without access to treatment. These are women who have curable cancers: even advanced cervical cancer can be cured with radiotherapy. The possibility exists to make this treatment universally available". Radiation therapy makes small breaks in the DNA inside cells. This stops cancer cells from growing and dividing and causes them to die. Unlike cisplatin therapy, [an anti-cancer ("antineoplastic" or "cytotoxic") chemotherapy], which usually exposes the whole body to cancer-fighting drugs, radiation therapy is usually a local treatment.
According to the 2019 Lancet Oncology study, HPV vaccination would result in a 3.9% reduction in cervical cancer incidence over the 20-year study period; assuming a best-case scenario of vaccinating every 12-year-old girl in the world starting in 2014. By 2072, when the first vaccinated cohort reaches 70, there would be a 22.9% reduction in incidence, still leaving 41.6m in need for therapy over that time period.
“We know that when administered together (chemoradiation) you can give lower doses of both and get a better kill-rate on the tumour. This is now the backbone of cervical cancer therapy”, says Growdon; see video below.
“We know that when administered together (chemoradiation) you can give lower doses of both and get a better kill-rate on the tumour. This is now the backbone of cervical cancer therapy”, says Growdon; see video below.
Abu Dhabi’s endeavours to reduce cervical cancer
For some years, experts have discussed religious and cultural barriers to cervical cancer screening and drew attention to the relatively low levels of cervical cancer awareness and screening for women in Middle Eastern Arab countries. Meta-analysis of cervical cancer studies conducted in Arab countries between January 2002 and January 2017 and published in the December 2017 edition of Nursing & Health Sciences, suggest that in Arab speaking countries there tends to be, “low knowledge of and perceptions about cervical screening among Arab women, the majority of whom are Muslim. Factors affecting the uptake of cervical cancer screening practices were the absence of organized, systematic programs, low screening knowledge among women, healthcare professionals' attitudes toward screening, pain and embarrassment, stigma, and sociocultural beliefs”.
The success of HPV vaccination in Abu Dhabi and the UAE
Notwithstanding, there are signs that this is changing. Leading such changes is Abu Dhabi of the United Arab Emirates (UAE). Over a decade ago, a mandatory free HPV vaccination program for school girls was introduced by Abu Dhabi’s Ministry of Health and Prevention and extended in 2013 to include women between 18 and 26. Also, the Ministry recommends that woman aged 25 to 65 years get a Pap smear every three to five years. Since 2018, HPV vaccinations have been provided free and compulsory for all school girls in Dubai and the Northern Emirates following a campaign to raise awareness.
Although the UAE is among the few countries to have relatively low incidence rates of cervical cancer, the disease still ranks as the third most frequent cancer among women in the UAE and the third most frequent cancer among women between 15 and 44. Estimates suggest that every year, 93 women are diagnosed with cervical cancer and 28 die from the disease in the UAE. Although Abu Dhabi is successfully leading the fight against cervical cancer and provides a roadmap for others to follow, the incidence of cervical cancer in the Middle East generally is expected to more than double by 2035 (>33,000 cases) and be responsible for more than 18,000 deaths. In some countries including Morocco and Saudi Arabia, low societal awareness and relatively low levels of screening results in about one in four women with HPV.
Although the UAE is among the few countries to have relatively low incidence rates of cervical cancer, the disease still ranks as the third most frequent cancer among women in the UAE and the third most frequent cancer among women between 15 and 44. Estimates suggest that every year, 93 women are diagnosed with cervical cancer and 28 die from the disease in the UAE. Although Abu Dhabi is successfully leading the fight against cervical cancer and provides a roadmap for others to follow, the incidence of cervical cancer in the Middle East generally is expected to more than double by 2035 (>33,000 cases) and be responsible for more than 18,000 deaths. In some countries including Morocco and Saudi Arabia, low societal awareness and relatively low levels of screening results in about one in four women with HPV.
Takeaways
As cervical cancer screening and prevention programs have been growing and extending their reach, so increases the need to provide access to effective treatment. Despite growing awareness of the disease and global efforts to increase availability of appropriate resources, cervical cancer remains prevalent particularly in LMIC where effective treatment has not become widespread. In many LMIC, the default option is often to do nothing, which results in certain death. Researchers and policy makers should consider focusing their activities on how to best to reconcile the use of existing resources with the expected impact on the quantity and quality of life. Although gaps in oncological resources and barriers to treatment still exist, the good news is that there is increased political will and international attention to improve access to safe and effective treatment of cervical cancer. Notwithstanding, eradicating the disease globally appears to be more of a theoretical possibility than a medium term reality.
Directory:
Tags:
- AstraZeneca has turned traditional biopharma R&D on its head and is targeting early stage cancer
- This strategy benefits from some of AstraZeneca’s R&D endeavours
- But the strategy faces strong headwinds, which include significant technological and market challenges and substantial Competition from at least two unicorns
AstraZeneca’s strategy to target early cancer
Will José Baselga’s gamble pay off?
Baselga is AstraZeneca's new cancer research chief who has turned traditional biopharmaceutical drug development on its head by announcing AstraZeneca’s intention to target early- rather than late-stage cancer. “We need to spend our resources on those places where we can cure more people and that’s in early disease”, says Baselga, who knows that early detection can significantly improve patient survival rates and quality of life, as well as substantially reducing the cost and complexity of cancer treatment. Baselga also must know his strategy is high risk. Will it work?
Baselga is AstraZeneca's new cancer research chief who has turned traditional biopharmaceutical drug development on its head by announcing AstraZeneca’s intention to target early- rather than late-stage cancer. “We need to spend our resources on those places where we can cure more people and that’s in early disease”, says Baselga, who knows that early detection can significantly improve patient survival rates and quality of life, as well as substantially reducing the cost and complexity of cancer treatment. Baselga also must know his strategy is high risk. Will it work?
In this Commentary
In this Commentary we discuss the drivers and headwinds of AstraZeneca’s strategy to increase its R&D focus on early stage cancer. But first we briefly describe cancer, the UK’s situation with regard to the disease and explain why big pharma targets advanced cancers. Also, we provide a brief description of AstraZeneca’s recent history.
What is cancer?
Cancer occurs when a normal cell’s DNA changes and multiplies to form a mass of abnormal cells, which we refer to as a tumour. If not controlled and managed appropriately the tumour can spread and invade other tissues and organs. In the video below Whitfield Growdon, a surgical oncologist at the Massachusetts General Hospital in Boston US, and a Professor at the Harvard University Medical School explains.
The UK’s record of cancer treatment
In the UK cancer survival rates vary between types of the disease, ranging from 98% for testicular cancer to just 1% for pancreatic cancer. Although the UK’s cancer survival rates lag those of other European countries, the nation’s overall cancer survival rate is improving. Several cancers are showing significant increases in five-year survival, including breast (80% to 86%), prostate (82% to 89%), rectum (55% to 63%) and colon (52% to 60%). Many of the most commonly diagnosed cancers in the UK have ten-year survival of 50% or more. With regard to cancer spending, compared with most Western European countries, including France, Denmark, Austria and Ireland, the UK spends less on cancer per person, with Germany spending almost twice as much per head.
Why big pharma targets advanced cancers?
Most cancers are detected late when symptoms have manifested themselves, which renders treatment less effective and more costly. When cancer is caught early, as in some cases of breast and prostate cancer, tumours tend to be removed surgically or killed by chemoradiation therapy (CRT) and this, for many people, provides a “cure”, although in some cases the cancer returns.
Studies in developed economies suggest that treatment costs for early-diagnosed cancer patients are two to four times less expensive than treating those diagnosed with advanced-stage cancer. Notwithstanding, there are physical, psychological, socio-economic and technical challenges to accessing early cancer diagnosis and these conspire to delay cancer detection. Thus, big pharma companies have traditionally aimed their new cancer drugs at patients with advanced forms of the disease. This provides pharma companies access to patients who are willing to try unproven therapies, which significantly helps in their clinical studies. And further, big pharma is advantaged because regulators tend to support medicines that slow tumour growth and prolong life, albeit by a few months.
Studies in developed economies suggest that treatment costs for early-diagnosed cancer patients are two to four times less expensive than treating those diagnosed with advanced-stage cancer. Notwithstanding, there are physical, psychological, socio-economic and technical challenges to accessing early cancer diagnosis and these conspire to delay cancer detection. Thus, big pharma companies have traditionally aimed their new cancer drugs at patients with advanced forms of the disease. This provides pharma companies access to patients who are willing to try unproven therapies, which significantly helps in their clinical studies. And further, big pharma is advantaged because regulators tend to support medicines that slow tumour growth and prolong life, albeit by a few months.
Imfinzi: the only immunotherapy to demonstrate survival at three years
A good example of this is AstraZeneca’s immunotherapy drug called Imfinzi (durvalumab) used in unresectable stage-III non-small cell lung cancer (NSCLC), which has not spread outside the chest and has responded to initial chemoradiation therapy. Imfinzi works by binding to and blocking a protein called PD-L1, which acts to disguise cancer cells from your immune system. Imfinzi removes the disguise so that your immune system is better able to find and attack your cancer cells.
Findings presented at the June 2019 meeting of the American Society of Clinical Oncology (ASCO), build on a clinical study of Imfinzi reported in the September 2018 edition of The New England Journal of Medicine, and suggest that Imfinzi is the only immunotherapy to demonstrate survival at three years in unresectable stage-III NSCLC. AstraZeneca has begun a phase-3 clinical study of the PD-L1 inhibitor protein in stage II NSCLC patients.
Findings presented at the June 2019 meeting of the American Society of Clinical Oncology (ASCO), build on a clinical study of Imfinzi reported in the September 2018 edition of The New England Journal of Medicine, and suggest that Imfinzi is the only immunotherapy to demonstrate survival at three years in unresectable stage-III NSCLC. AstraZeneca has begun a phase-3 clinical study of the PD-L1 inhibitor protein in stage II NSCLC patients.
|
|
Directory:
Tags:
- People are living longer, the prevalence of age-related degenerative disc disease is increasing and sufferers are more and more turning to spinal implant surgery as a solution
- As this significantly raises the burden on over-stretched healthcare systems, so is spine surgery increasingly becoming a key target for cost reduction within healthcare systems
- This intensifies the pressure on manufacturers to innovate and make spinal implants more cost effective
Can 3D printing and the use of new alloys reduce the high costs of producing and marketing spinal implants?
On January 8th 2019 surgeons at Joseph Spine, a specialist surgery centre based in Tampa Bay Florida, were the first in the US to implant a 3D printed interbody fusion device, which was produced by Osseus Fusion Systems. The company uses its proprietary 3D printing technology, also known as additive manufacturing, to build spinal implants from titanium material that is optimized for bone fusion and biological fixation. In August 2018, a suite of Osseus’s devices received clearance from the US Food and Drug Administration (FDA) for a range of heights and lordotic (inward spinal curvature) angles, which make them adaptable for a variety of patient anatomies. The interbody fusion devices work by being packed with biomaterials and bone grafts and inserted in between two vertebrae, where they fuse with the spine and work to prevent back pain.
In this Commentary
This Commentary explores whether 3D printing and the use of new alloys could be an appropriate strategy to help spine companies reduce their production and sales costs and enhance their market positions. Our suggestions here complement a strategy, described in a previous Commentary, for MedTech companies to develop and implement digital strategies to enhance their go-to-market activities, strengthen the value propositions of products and services and streamline internal processes. The reasons spine companies might consider both strategies are because spinal implant markets, which are segmented by type of surgery, product and geography, are experiencing significant competitive, regulatory, pricing and technological challenges as well as mounting consumer pressure for improved outcomes; and the business model, which served as an accelerator of their financial success over the past decade is unlikely to be effective over the next decade.
3D printing
3D printing is a process, which creates a three-dimensional (3D) object by building successive layers of raw material. Each new layer is attached to the previous one until the object is complete. In the healthcare industry, 3D printing is used in a wide range of applications, such as producing dental crowns and bridges; developing prototypes; and manufacturing surgical guides and hearing aid devices. Increasingly, 3D printing is being used for the production of spinal implants.
Spine surgery increasing significantly
An estimated US$90bn is spent each year in the US on the diagnosis and management of low back pain (LBP). LBP, caused by age related degenerative disc disease, is one of the most common and widespread public health challenges facing the industrialized world. It is estimated that the condition affects over 80% of the global population and inflicts a heavy and escalating burden on healthcare systems. Also, LBP affects economies more generally in terms of lost production due to absenteeism, early retirement and the psychosocial impact caused by the withdrawal of otherwise active people from their daily activities. According to the American Association of Neurological Surgeons, more than 65m Americans suffer from LBP annually and the Chicago Institute of Neurosurgery and Neuroresearch suggests that by the age of fifty, 85% of the US population is likely to show evidence of disc degeneration. It is estimated that 10% of all cases of LBP will develop chronic back pain, which is one of the main reasons for people to seek surgical solutions and this significantly raises the burden on over-stretched healthcare systems.
Findings of a study published in the March 2019 edition of Spine, entitled, “Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States 2004 to 2015”, report that the rate of elective lumbar fusion surgeries in the US has increased substantially over the past decade. Such trends are indicative of most advanced industrial societies, which are changing and ageing, primarily driven by improvements in life expectancy and by a decrease in fertility. This results in people living longer, reaching older ages and having fewer children later in life. Over the next decade, these market drivers are expected to make spine surgery a key target for cost reduction within healthcare systems and this, in turn, is likely to increase pressure on manufacturers of spinal implants to make spine surgery more cost effective.
Findings of a study published in the March 2019 edition of Spine, entitled, “Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States 2004 to 2015”, report that the rate of elective lumbar fusion surgeries in the US has increased substantially over the past decade. Such trends are indicative of most advanced industrial societies, which are changing and ageing, primarily driven by improvements in life expectancy and by a decrease in fertility. This results in people living longer, reaching older ages and having fewer children later in life. Over the next decade, these market drivers are expected to make spine surgery a key target for cost reduction within healthcare systems and this, in turn, is likely to increase pressure on manufacturers of spinal implants to make spine surgery more cost effective.
|
|
|
|
Directory:
Tags:
- Two Boston Consulting Group studies say MedTech innovation productivity is in decline
- A history of strong growth and healthy margins render MedTechs slow to change their outdated business model
- The MedTech sector is rapidly shifting from production to solutions
- The dynamics of MedTechs' customer supply chain is changing significantly and MedTech manufacturers are no longer in control
- Consolidation among buyers - hospitals and group purchasing organisations (GPO) - adds downward pressure on prices
- Independent distributors have assumed marketing, customer support and education roles
- GPOs have raised their fees and are struggling to change their model based on aggregate volume
- Digitally savvy new entrants are reinventing how healthcare providers and suppliers work together
- Amazon’s B2B Health Services is positioned to disrupt MedTechs, GPOs and distributors
- MedTech manufacturers need to enhance their digitization strategies to remain relevant
MedTech must digitize to remain relevant
MedTech companies need to accelerate their digital strategies and integrate digital solutions into their principal business plans if they are to maintain and enhance their position in an increasingly solution orientated healthcare ecosystem. With growing focus on healthcare value and outcomes and continued cost pressures, MedTechs need to get the most from their current portfolios to drive profitability. An area where significant improvements might be made in the short term is in MedTechs' customer facing supply chains. To achieve this, manufacturing companies need to make digitization and advanced analytics a central plank of their strategies.
In this Commentary
This Commentary describes the necessity for MedTechs to enhance their digitization strategies, which are increasingly relevant, as MedTech companies shift from production to solution orientated entities. In a previous Commentary we argued that MedTechs history of strong growth and healthy margins make them slow to change and implement digital strategies. Here we suggest that the business model, which served to accelerate MedTechs' financial success over the past decade is becoming less effective and device manufacturers need not only to generate value from the sale of their product offerings, but also from data their devices produce so they can create high quality affordable healthcare solutions. This we argue will require MedTechs developing innovative strategies associated with significantly increasing their use of digital technology to enhance go-to-market activities, strengthen value propositions of products and services and streamline internal processes.
MedTechs operate with an outdated commercial model
Our discussion of digitization draws on two international benchmarking studies undertaken by the Boston Consulting Group (BCG). The first, published in July 2013 and entitled, “Fixing the MedTech Commercial Model: Still Deploying ‘Milkmen’ in a Megastore World” suggests that the high gross margins that MedTech companies enjoy, particularly in the US, hide unsustainable high costs and underdeveloped commercial skills. According to BCG the average MedTech company’s selling, general and administrative (SG&A) expenses - measured as a percentage of the cost of goods sold - is 3.5 times higher than the average comparable technology company. The study concludes that MedTechs' outdated business model, dubbed the “milkman”, will have to change for companies to survive.
BCG’s follow-up 2017 study
In 2017 BCG published a follow-up study entitled, “Moving Beyond the ‘Milkman’ Model in MedTech”, which surveyed some 6,000 employees and benchmarked financial and organizational data from 100 MedTech companies worldwide, including nine of the 10 largest companies in the sector. The study suggested that although there continued to be downward pressure on device prices, changes in buying processes and shrinking gross margins, few MedTech companies “have taken the bold moves required to create a leaner commercial model”.
According to the BCG’s 2017 study, “Overall, innovation productivity [in the MedTech sector] is in decline. In some product categories, low-cost competitors - including those from emerging markets - have grown rapidly and taken market share from established competitors. At the same time, purchasers are becoming more insistent on real-world evidence that premium medical devices create value by improving patient outcomes and reducing the total costs of care”. The growth and spread of value-based healthcare has shifted the basis of competition beyond products, “toward more comprehensive value propositions and solutions that address the entire patient pathway”. In this environment, MedTechs have no choice but to use data to deliver improved outcomes and a better customer experience for patients, healthcare providers and payers.
According to the BCG’s 2017 study, “Overall, innovation productivity [in the MedTech sector] is in decline. In some product categories, low-cost competitors - including those from emerging markets - have grown rapidly and taken market share from established competitors. At the same time, purchasers are becoming more insistent on real-world evidence that premium medical devices create value by improving patient outcomes and reducing the total costs of care”. The growth and spread of value-based healthcare has shifted the basis of competition beyond products, “toward more comprehensive value propositions and solutions that address the entire patient pathway”. In this environment, MedTechs have no choice but to use data to deliver improved outcomes and a better customer experience for patients, healthcare providers and payers.
MedTech distributors increasing their market power and influence
Although supply chain costs tend to be MedTechs' second-highest expense after labour, companies have been reluctant to employ digital strategies to reduce expenses and increase efficiencies. As a consequence, their customer supply chains tend to be labour intensive relationship driven with little effective sharing of data between different territories and sales teams. Customer relations are disaggregated with only modest attention paid to patients and payors and insufficient emphasis on systematically collecting, storing and analysing data to support value outcomes.
|
|
|
|
Directory:
Tags:
- Each year unhealthy diets are linked to 11m deaths worldwide a global study concludes
- Red and processed meat not only cause disease and premature death from chronic non-communicable diseases (NCD) but also put the planet at unnecessary risk
- Evidence suggests that the health benefits of a Mediterranean diet reduces the risk of NCDs and is better for the Planet
Eat like Greeks, live healthier lives and save our planet
Findings of an international research project about the relationship between diet and chronic diseases are reported in a paper entitled, “Health effects of dietary risks in 195 countries 1990-2017. A systematic analysis for the Global Burden of Disease Study 2017”, which is published in the April 2019 edition of The Lancet. The paper suggests that millions of people throughout the world consume an unhealthy diet comprised of too much processed meat, sodium and sugar and too little plant-based foods, such as fruits and vegetables, whole grains and nuts. This results in a significant increase in the prevalence of chronic non-communicable diseases (NCD) such as coronary heart disease, cancer and diabetes and each year causes some 11m avoidable deaths worldwide - 22% of all adult deaths: 10m from cardiovascular disease, 913,000 from cancer and some 339,000 from type-2 diabetes. According to the paper’s authors, “A suboptimal diet is responsible for more deaths than any other risks globally, including tobacco smoking, highlighting the urgent need for improving human diet across nations”.
In this Commentary
This Commentary reviews evidence of recent large-scale epidemiology studies, which suggest that “you are what you eat”. Not only do unhealthy diets cause ill health and premature death for millions, they also harm the environment and push the Earth beyond its planetary boundaries. All the studies we describe conclude that we know the answer to this vast and escalating health problem: eat like Greeks or indeed the Japanese. Notwithstanding, changing the way populations collectively eat is a massive challenge facing governments, healthcare systems and individuals.
The Global Burden of Disease project
The Lancet paper’s findings described above are based on the Global Burden of Disease (GBD) enterprise, which is one of the world’s largest scientific collaborative research projects, which was started in the early 1990s by the World Bank to measure the impact of disability and death from hundreds of diseases worldwide. Over the past two decades its work has grown, and the endeavour has become institutionalized at the World Health Organization (WHO). Today, the GBD project is an international consortium of more than 3,600 researchers, its findings are updated annually and they influence health policy throughout the world.
Red meat and bowel cancer
Findings of a more narrowly focussed but nonetheless significant study, published in the April 2019 edition of the International Journal of Epidemiology warn that red-processed meat consumption is linked with bowel cancer. According to Tim Key, the study’s co-author, Professor of Epidemiology and Deputy Director at Oxford University's Cancer Epidemiology Unit, “Results strongly suggest that people who eat red and processed meat four or five times a week have a higher risk of developing bowel cancer than those who eat red and processed meat less than twice a week . . . . There’s substantial evidence that red and processed meat are linked to bowel cancer and the World Health Organization classifies processed meat as ‘carcinogenic’ and red meat as ‘probably carcinogenic’”. Notwithstanding, Key warns that, “Diet studies are problematic because those who take part often either forget what they have eaten or fail to tell the truth”. Key also suggests that, “Most previous research [on diet and cancer] looked at people in the 1990s or earlier and diets have changed significantly since then”.
Chronic non-communicable diseases
Chronic non-communicable diseases (NCD) are largely caused by humans and are therefore preventable. Notwithstanding, they account for more than 70% of all deaths globally and emergent NCDs pose significant systemic challenges for both nation states and individuals. Forty percent of all adults in the world are overweight and 1.4bn suffer from hypertension: both critical risk factors of NCDs. In 2016, 18m people died from cardiovascular disease (CVD), representing 31% of all global deaths. In the US an estimated 92m adults are living with CVD. By 2030, 44% of the US adult population is projected to have some form of CVD. There are around 7m people living with heart and circulatory disease in the UK. Worldwide some 0.5bn people have diabetes and in 2018 there were 17m new cases of cancer worldwide. Although there are some encouraging signs associated with the slowing of the prevalence rates of NCDs globally, prevalence of NCDs is expected to rise because of population growth and aging, misaligned healthcare policies and institutional inertia.
The paradox of food insecurity and obesity
Paradoxically, food scarcity and obesity are both forms of malnutrition and represent a vast and escalating burden on the worlds limited and diminishing resources. This is because food insecurity can contribute to people being overweight and obese. Nutritious fresh foods often tend to be expensive, so when household resources for food become scarce, people choose less expensive foods that are often high in calories and low in nutrients. As a result, adult obesity rates continue to rise each year, from 11.7% in 2012 to 13.2% in 2016. In 2017 the World Health Organization estimated that more than one in eight adults, or more than 672m people in the world, were obese and 2bn were classified as overweight. A report from the Center for Strategic and International Studies, a think-tank based in Washington DC, US, suggests that worldwide each year, "Malnutrition costs US$3.5trn, with overweight- and obesity-related NCDs, such as cardiovascular disease and type 2 diabetes, adding US$2trn”.
The EAT-Lancet Commission on Food, Planet and Health
Not only do unhealthy diets result in NCDs and premature death, but they also harm the environment. The dual aspects of unhealthy diets causing disease and harming the planet are described in research conducted by the EAT-Lancet Commission on Food, Planet and Health, and reported in the January 2019 edition of The Lancet.
|
|
Directory:
Tags:
Devi Shetty’s model for affordable healthcare
On the 26th March 2019 Bloomberg Businessweek published an article entitled, "The World’s Cheapest Hospital has to Get Even Cheaper”, which describes one of India’s largest private hospital chain's - Narayana Health - response to Modicare, a signature initiative by Prime Minister Narendra Modi to provide basic healthcare for 500m of India’s poorest. Devi Shetty, a world-renowned cardiac surgeon and chairman of Narayana Health, is up for the task. Since Shetty founded Narayana in 2000 it has grown to become a large multi-speciality hospital chain, comprising 31 state-of-the-art tertiary hospitals across 19 cities, employing 16,000 and each year treating over 2.5m patients across more than 30 medical specialities. Shetty’s mission is to provide high quality, affordable healthcare services to the broader population in India and he is convinced that quality and low-cost healthcare are not mutually exclusive. In conjunction with the state of Karnataka, Shetty has created a health insurance plan, which has enrolled some 3m poor people at an annual premium of about US$2.6. More than half of Narayana’s cardiac operations are performed on patients too poor to afford the full cost. In addition to the insurance scheme free or subsidized inpatient care is achieved through philanthropy and a cross-subsidy model, in which higher-income patients pay more for nonclinical amenities, such as private recovery rooms. Since the total charges are still far below the cost of comparable services at other private Indian hospitals, Narayana Health remains an attractive option for such consumers. Narayana Health’s business model is sustainable because of its ability to attract so many patients who can pay full price. The Wall Street Journal has dubbed Shetty, The Henry Ford of Heart Surgery because he applies assembly line concepts to surgery in order to optimize productivity, minimize costs and leverage economies of scale. Because of these innovations the average cost of open-heart surgery, as reported by Narayana Health, is less than US$2,000. The same procedure at a US research hospital typically costs more than US$100,000. Since 2012 HealthPad has worked closely with Devi Shetty. We published our first Commentary about Narayana Health and Devi Shetty’s model for affordable quality healthcare in 2013 and in subsequent years published two more. Shetty and his fellow senior surgeons have contributed over 700 videos to HealthPad’s content library, which address FAQs across 11 clinical pathways. Further, Narayana’s clinicians have featured in HealthPad Commentaries on Chronic obstructive pulmonary disease (COPD), Diabetes and Kidney Disease and Cardiovascular Disease. Because of the large and growing international interest in Shetty’s alternative model for affordable healthcare we re-publish lightly edited versions of HealthPad’s three Commentaries about Narayana Health. |
|
|
|
Directory:
Tags:
First published on 14th August 2013
The UK’s NHS loss is global healthcare’s gain
In 2011 Devi Shetty, an Indian doctor, received the coveted business process innovation award in London from The Economist for his contribution to global healthcare. Trained as a cardiac surgeon in the UK, Shetty returned to India and started a hospital in Bengaluru in 2000. Today, Shetty is on the cusp of changing healthcare in the 21st century.
Shetty’s no-frills hospital chain
In 2012 Shetty launched the first in a chain of no-frills hospitals: a 200-bed single-storey clinic in Mysore, India. Built in 10 months for US$7m, it charges only US$800 for open heart surgery. Shetty rejected the multi-storey hospital model, because it requires costly foundations, steel reinforcements, lifts and complex fire and safety equipment. Much of the Mysore building was pre-fabricated. Its five operating theatres and intensive care units are the only air-conditioned places and families are encouraged to provide supplementary care for patients.
Shetty’s no-frills hospital chain owes its existence to his pioneering hospital in Bengaluru.
Shetty’s no-frills hospital chain owes its existence to his pioneering hospital in Bengaluru.
Shetty’s medical city in Bengaluru
In 2000 Shetty started Narayana Hrudayalaya, a specialist hospital for cardiac surgery, which today performs the highest number of heart surgeries in the world for any one hospital: 7,000 annually and does not compromise on quality. “We are only technicians,” says Shetty. ”We realised that as you do more surgical procedures, your results get better, and your costs go down. In the US the average cardiac surgeon does about 2,000 surgeries in his or her professional lifetime. We have surgeons who have done more than 3,000 surgeries and they’re only in their 30s . . . imagine the expertise that they have, at that young age.”
Medicines and associated hospital costs in India are significantly lower than in the West, but Narayana offers Indian patients value for money. The average price for open heart surgery in Narayana is around US$2,000, compared to US$5,000 in the average private Indian hospital and $20,000 to $100,000 in a US hospital.
Shortly after starting his Bengaluru cardiac centre, Shetty acquired a 35-acre site next door and built a 1,400-bed cancer hospital and a 300-bed eye hospital and created Narayana Hrudayalaya Medical City, which has 3,000 beds in Bengaluru and is run at near to full capacity. In total Narayana has some 7,000 beds in a number of clinics and hospitals throughout India, and plans to expand to 50,000 beds in the next five years.
Medicines and associated hospital costs in India are significantly lower than in the West, but Narayana offers Indian patients value for money. The average price for open heart surgery in Narayana is around US$2,000, compared to US$5,000 in the average private Indian hospital and $20,000 to $100,000 in a US hospital.
Shortly after starting his Bengaluru cardiac centre, Shetty acquired a 35-acre site next door and built a 1,400-bed cancer hospital and a 300-bed eye hospital and created Narayana Hrudayalaya Medical City, which has 3,000 beds in Bengaluru and is run at near to full capacity. In total Narayana has some 7,000 beds in a number of clinics and hospitals throughout India, and plans to expand to 50,000 beds in the next five years.
Tele-medicine
In association with India’s Space Research Organization, Sherry's Bengaluru hospital runs one of the world’s largest tele-cardiology programs, which reaches 100 facilities throughout India, over 50 across Africa and Narayana’s doctors have treated some 70,000 patients remotely. Narayana Health also disperses 5,000 kidney dialysis machines, which makes the company India’s largest kidney-care provider.
Health insurance
With the state of Karnataka, Shetty has created a health insurance plan, which has enrolled some 3m poor people at an annual premium of about US$2.6. Last year, about 60% of Narayana Hrudayalaya cardiac operations were performed on patients too poor to afford the full cost.
Shetty however is not a charity. His hospitals treat a cross section of patients at variable rates but refuse to turn away anyone who cannot pay. “Charity,” he says, “is not scalable. Good healthcare depends on good business.” Shetty’s hospital group earns an after-tax profit of 8%, slightly above the 6.9% average for a US hospital.
Shetty however is not a charity. His hospitals treat a cross section of patients at variable rates but refuse to turn away anyone who cannot pay. “Charity,” he says, “is not scalable. Good healthcare depends on good business.” Shetty’s hospital group earns an after-tax profit of 8%, slightly above the 6.9% average for a US hospital.
Health City Cayman Islands
Shetty has now turned his attention outside of India and is engaged in a joint venture with the government of the Cayman Islands and a group of American institutional investors, to construct and operate a hospital in Grand Cayman to capture share from the North and South American healthcare markets.
The first phase, a 140-bed tertiary care facility for cardiac surgery, cardiology and orthopaedics, was opened in 2014 and benefits from the cost-effective healthcare procedures honed by Shetty over the past decade. By 2020, the Cayman enterprise, which also will have a medical university and an assisted-care living community, is projected to expand into a 2,000-bed Joint Commission International-accredited Health City providing care in all major specialties.
The first phase, a 140-bed tertiary care facility for cardiac surgery, cardiology and orthopaedics, was opened in 2014 and benefits from the cost-effective healthcare procedures honed by Shetty over the past decade. By 2020, the Cayman enterprise, which also will have a medical university and an assisted-care living community, is projected to expand into a 2,000-bed Joint Commission International-accredited Health City providing care in all major specialties.
Super-size hospitals
At a time when the global healthcare debate is emphasising community based preventative strategies, Shetty’s vision is, “affordable healthcare for everyone in super-size hospitals. Today healthcare has got phenomenal services to offer,” he says. “Almost every disease can be cured and if you can't cure patients, you can give them meaningful lives.” Shetty is driven by the fact that a century after heart surgery was developed only 10% of the world’s population can afford it. Each year, India alone needs 2.5m heart operations and yet there are only 90,000 performed.
"Current regulatory structures, policies and business strategies [for healthcare] are wrong,” says Shetty, “If they were right, we should have reached 90% of the world's population." Recently, he shocked a UK audience of health providers by suggesting that it would be better if England only had three centres for cardiac surgery rather than 22.
"Current regulatory structures, policies and business strategies [for healthcare] are wrong,” says Shetty, “If they were right, we should have reached 90% of the world's population." Recently, he shocked a UK audience of health providers by suggesting that it would be better if England only had three centres for cardiac surgery rather than 22.
The Henry Ford of heart surgery
Sir Bruce Keogh, the UK’s former National Medical Director of the NHS Commissioning Board, once suggested that healthcare in England should become more like retail. Shetty thinks like a retailer, views patients as “customers” and has employed mass production techniques used in the early 20th century to automate the American car industry. Known as, “the Henry Ford of heart surgery”, Shetty has demonstrated that high volume complex surgeries mean better outcomes and lower costs. Similar to what Henry Ford did for the auto industry, Shetty has disaggregated clinical procedures into a number of discrete, standardized, unambiguous units, which can be learnt, practiced and repeated. His methods have successfully reduced hospital costs, increased efficiency, enhanced the quality of care and eliminated clinical mistakes. According to Shetty, “Healthcare has huge variation in procedures, outcomes and costs . . . It is the lack of standardization that contributes to hospital mistakes, high costs and low quality of care”.
Change is inevitable
Shetty is convinced that the dearth of health workers worldwide will force change and increase the use of emerging healthcare technologies. An advocate for open technological systems, he says, “In five years a computer will make more accurate diagnoses than doctors. In 10-years it will be mandatory for a doctor to get a second opinion from a computer before starting treatment.”
Takeaways
Not only will Shetty’s Health City Cayman Islands be a lower cost alternative for North and South American patients, it will demonstrate how over-priced and inefficient hospitals in the West are. However, it is not altogether clear whether Shetty’s formula for low-cost high-quality surgical procedures will be effective outside of India. This is mainly because high quality ancillary services associated with complex surgeries, which are relatively inexpensive in India, tend to be patchy and significantly more costly outside of India. Notwithstanding, Shetty is determined to provide the world with a model of affordable healthcare.
Directory:
Tags:
|
|
|
|
|
|