Tag

Tagged: DNA sequencing

Sponsored
  • Healthcare is shifting from uniform treatments to personalised care, driven by genetics, lifestyle, and technology
  • Patients benefit from targeted therapies that deliver early disease detection, enhanced therapies and proactive prevention
  • Traditional MedTechs, accustomed to one-size-fits-all devices, face challenges but also can find opportunities from individualised care for growth and innovation
  • To capitalise on these opportunities, conventional corporations must recalibrate their strategies and collaborate with start-ups and healthcare institutions
 
The Impact of Personalised Healthcare on Traditional MedTechs

Personalised medicine, also known as precision medicine, marks a departure from traditional medical practices by acknowledging the interplay of genetics, lifestyle, and environment in shaping an individual's health. Rather than adhering to one-size-fits-all treatments, individualised care prioritises early detection and proactive prevention, tailoring interventions based on each patient's unique genetic makeup. Digitalisation, together with advances in medical technology, enables the combination and analysis of genomic information with other diagnostic data to identify patterns that help to determine an individual’s risk of developing a disease, detect illness earlier, and determine the most effective interventions. For example, in cancer treatment, personalised therapies target specific proteins driving cancer growth, offering more effective alternatives to conventional methods like customary chemotherapy. Findings of a 2012 study published in Trends in Molecular Medicine found that the response rate to a targeted therapy for acute myeloid leukaemia to be at 90% compared with 35% for standard chemotherapy. Another notable development in customised care is the DNA medication pass, which enables clinicians to identify the most suitable drugs for individual patients, reducing adverse reactions and hospital admissions due to drug-related complications. Such personalised approaches empower patients with treatments aligned to their genetic predispositions and foster greater autonomy and engagement in healthcare decisions.

In today's data-driven environment, the emphasis on precision care is growing, and creating a shift in healthcare delivery. A recent research paper published in the Journal of Translational Medicine suggests that personalised medicine will lead to the next generation of healthcare by 2030. While many traditional medical technology companies are content with supplying standardised medical devices to hospitals, an increasing number wish to pivot and capitalise on the rapidly growing targeted healthcare segment. However, they face the challenge of adapting their established frameworks, which are not designed to create bespoke solutions and services. This emphasises the significance of adaptability across diverse healthcare settings. Forward-thinking corporations, however, recognise the need to evolve. By investing in novel R&D initiatives and fostering collaboration throughout the healthcare spectrum, they position themselves favourably. Conversely, companies resistant to change risk stagnation and eventual obsolescence in an era where personalised care is rapidly gaining traction.

 
In this Commentary

This Commentary delves into the impact of personalised healthcare on traditional MedTech companies, highlighting the imperative for alignment with customised care to remain competitive. It explores how targeted medicine, driven by advancements in genetics, digitalisation, and medical technology, is reshaping healthcare delivery by prioritising individualised treatments tailored to patients' unique genetic makeup. The Commentary emphasises the need to adapt conventional strategies amidst industry trends, addressing challenges such as regulatory complexities and technology adoption barriers. Through initiatives like partnerships, novel R&D, diversification, and strategic M&A, traditional MedTechs can position themselves to lead in the era of precision care. The Commentary offers examples of start-ups and established firms addressing this segment, insights into the opportunities and challenges traditional companies face in adapting to the growing emphasis on personalised healthcare, and emphasises the importance of innovation, collaboration, and proactive responses to industry shifts.
 
Brief History

The roots of personalised healthcare can be traced back to ancient civilisations where healers recognised individual differences in response to treatments. However, formalised concepts began to emerge in the late 19th and early 20th centuries with the advent of modern medicine. The discovery of the structure of DNA by James Watson and Francis Crick in 1953 laid the foundation for understanding the role of genetics in health and disease. Advances in DNA sequencing technologies in the late 20th century, particularly the completion of the Human Genome Project in 2003, enabled scientists to decipher the entire human genetic code, ushering in the genomic era.
 
In the late 20th century, researchers began to explore how genetic variations influence an individual's response to drugs. Pharmacogenomics emerged as a field focused on tailoring drug treatments to a person's genetic makeup, aiming to maximise efficacy and minimise adverse effects. Rapid advancements in technology, such as next-generation sequencing and high-throughput screening, have made it more feasible and cost-effective to analyse large amounts of genetic data. This has accelerated research in tailored therapies and expanded their application beyond pharmacogenomics to include risk assessment, disease diagnosis, and treatment selection.
As we suggested, one of the earliest and most successful applications of customised healthcare has been in oncology. Precision oncology uses genomic profiling to identify genetic mutations driving cancer growth and matches patients with targeted therapies designed to address their specific mutations. The success stories in treating certain cancers, such as leukaemia and melanoma have fuelled further interest and investment in personalised approaches.
You might also like:

Healthcare 2040


 
The rise of big data analytics and artificial intelligence (AI) has been instrumental in advancing targeted care. By integrating genetic, clinical, lifestyle, and environmental data, AI algorithms can identify patterns, predict disease risks, and recommend precise interventions targeted to an individual’s unique profile. Governments have recognised the potential of these approaches to improve patient outcomes and reduce healthcare costs. Endeavours such as the Precision Medicine Initiative in the US, the NHS Long Term Plan in the UK, and similar efforts in other countries aim to accelerate the adoption of customised medicine. As technology continues to evolve and our understanding of genetics and biology deepens, personalised healthcare is poised to become increasingly integral to mainstream medical practice, ultimately leading to better health outcomes.
 
Challenges and Barriers to Personalised Care

Customised medicine, while promising, faces challenges. One hurdle lies in the complexity and sheer volume of data required to tailor treatments to individual patients. Integrating diverse datasets from genomics, medical history, lifestyle factors, and environmental influences demands sophisticated analytics and robust privacy safeguards. Additionally, interoperability issues between different healthcare systems impede data exchange and collaboration among healthcare providers. Economic constraints further obstruct widespread adoption, as customised therapies often come with hefty price tags, limiting access for many patients. Regulatory frameworks must also evolve to accommodate the dynamic nature of tailored medicine, ensuring rigorous oversight without stifling innovation. Moreover, educating healthcare professionals and patients about the benefits and limitations of personalised approaches is essential for fostering trust and acceptance. Overcoming these challenges demands interdisciplinary collaboration, technological advancements, and a commitment to equitable access to focussed healthcare.
 
The Changing Landscape of Traditional MedTechs

Despite these challenges, the growing emphasis on personalised care represents a shift in traditional MedTech markets. Although the precise timeline for tailored therapies to substantially influence conventional corporations remains uncertain, the trend signals a clear direction for the industry. The International Consortium for Personalised Medicine (ICPerMed) envisions a healthcare landscape firmly rooted in customised medicine principles by 2030. This vision entails an ecosystem where individual characteristics inform diagnostics, treatments, and preventive measures, resulting in heightened effectiveness and economic value, all while ensuring equitable access for all individuals.
 
Historically, MedTech markets have exhibited a degree of reluctance in adopting new technologies, offering some comfort to conventional leaders in the field. However, the insights provided by the ICPerMed research should serve as a catalyst for traditional enterprises to re-evaluate their strategies and product offerings if they intend to capitalise on the growing trend of customised care. Notably, investments in innovative technologies that facilitate precision diagnostics, targeted therapies, and patient-centric interventions have already proven effective and are on the rise.
You might also like:

Unleashing MedTech's Competitive Edge through Transformational Technologies
Furthermore, the integration of data analytics and remote monitoring capabilities is reshaping the dynamics among medical devices, patients, and healthcare providers. This integration fosters enhanced connectivity and delivers real-time insights, thereby helping to transform the healthcare ecosystem. As tailored care gains momentum, traditional corporations must embrace agility, collaboration, and an understanding of patient preferences to thrive. This necessitates a proactive re-evaluation of their strategies.
Healthcare Firms Leading the Shift Towards Personalised Care

Many early-stage MedTech companies and established healthcare firms are leveraging evolving technologies and data to meet the growing demand for personalised healthcare. Omada Health, for instance, offers a platform combining connected devices and data analytics to help manage chronic conditions through tailored lifestyle interventions. iRhythm Technologies' Zio patch, a wearable cardiac monitor, uses advanced algorithms to detect heart conditions more accurately. Butterfly Network's Butterfly iQ is the first smartphone-connected whole-body ultrasound system, enhancing imaging quality and diagnostic capabilities through AI. Mature enterprises like AliveCor and Fitbit, now part of Google, have also pivoted to tailored healthcare. AliveCor’s  KardiaMobile provides at-home ECGs and shares data for customised treatment plans, while Fitbit offers devices with advanced health monitoring features and personalised wellness programmes. Dexcom's G6 CGM System provides real-time glucose tracking integrated with health data platforms. Roche has shifted towards customised healthcare with digital health solutions like the Roche Diabetes Care platform and the NAVIFY Tumor Board for personalised cancer treatments. 23andMe, initially known for genetic testing, now partners with pharmaceutical companies for drug discovery and develops tailored treatment plans based on genetic data.
 
Transforming MedTech in the Era of Personalised Care

The healthcare industry is undergoing a transformation marked by a shift towards patient-centric care and the adoption of value-based healthcare models. This shift is driving increased collaboration among traditional MedTech firms, healthcare providers, and emerging players, all united in their goal to innovate and tackle the complex challenges facing healthcare today. Regulatory changes and technological advancements also are playing roles in reshaping the competitive landscape, guiding the industry towards more patient-centred, value-driven, and collaborative approaches. In response to these evolving dynamics, MedTech companies are transforming their product development strategies by embracing agile and interdisciplinary approaches. Leveraging digital technologies, they are adapting to changing demands through virtual testing, data-driven design optimisation, and rapid prototyping.
 
The move towards personalised care is not only transforming product development strategies but also reshaping business models within the MedTech industry. There is a growing emphasis on outcome-based pricing and service-oriented solutions, reflecting the industry's focus on delivering measurable results and comprehensive care experiences. Digital health platforms and software-as-a-service (SaaS) offerings are emerging as key drivers of revenue, highlighting the importance of innovation and customer engagement in staying competitive and relevant.
 
Amid these transformations, regulatory and compliance considerations are crucial. Regulatory frameworks are becoming more stringent, emphasising product safety, efficacy, and data privacy. Compliance with varying standards across geographies is essential for market access, requiring companies to navigate these landscapes skilfully to sustain growth. Regulatory bodies are also evolving to tackle emerging challenges like cybersecurity and interoperability, highlighting the need for effective regulatory management in today's MedTech ecosystem. Addressing these challenges demands collaboration among stakeholders to build trust, promote standards, and ease the adoption of innovative technologies. Only through concerted efforts can the industry overcome these obstacles and fully realise the potential of customised care in transforming healthcare delivery.
 
Adaptation Strategies for Traditional MedTech Companies

To strengthen their alignment with personalised healthcare, traditional MedTechs can adopt several strategies. One effective approach, which, in a previous Commentary, we referred to as the Third Way, involves forming partnerships and collaborations with start-ups, research institutions, or other industry players. Through these partnerships, corporations can gain access to novel technologies, broaden their market reach, and expedite the pace of innovation. Additionally, diversification emerges as another adaptation strategy, enabling companies to venture into adjacent markets or therapeutic areas. This not only helps in mitigating risks but also enables them to capitalise on emerging opportunities within the healthcare landscape. Furthermore, many traditional corporations opt for M&A to bolster their market position, acquire specialised capabilities, or tap into new customer segments. Collectively, these strategies empower traditional corporations to navigate industry transitions towards customised care, foster sustained growth, and uphold their competitive edge.
 
Takeaways
`
This Commentary highlights the need for companies to re-evaluate their strategies in response to the industry's shift toward personalised care, a force shaping the future of healthcare delivery. It suggests traditional enterprises should proactively address challenges such as regulatory compliance, data security, and technological adoption barriers. Yet, within these challenges lie significant opportunities for growth and innovation. By pursuing strategic partnerships, investing in R&D, diversifying, and engaging in M&A, corporations can lead in the era of customised care, influencing healthcare's trajectory. Despite obstacles, the outlook for traditional enterprises is promising, driven by technological advancements and global healthcare demands. Success, however, depends on their agility, resilience, and proactive adaptation to the evolving landscape. By leveraging innovation and fostering collaboration, traditional MedTechs can navigate complexity and continue to drive positive transformation within the industry.
view in full page

Changing the code of life



Congratulations!
 
On 7 October,  the Royal Swedish Academy of Sciences announced that it had awarded the 2020 Nobel Prize for Chemistry to two women scientists: Emmanuelle Charpentier (L), a French microbiologist, geneticist and biochemist,  who is now the director of the Max Planck Unit for the Science of Pathogens in Berlin, Germany, and Jennifer Doudna (R), an American biochemist  who is a professor of chemistry, biochemistry and molecular biology at UC Berkeley.

The scientists developed a simple, cheap, yet powerful, and precise technique for editing DNA, which is called CRISPR-Cas9 (an acronym for Clustered Regularly Interspaced Short Palindromic Repeats) and popularly referred to as a pair of ‘genetic-scissors’. The technology endows science and scientists with extraordinary powers to manipulate genes to cure genetic diseases, improve crops to withstand drought, mould and pests, and affect climate change, and is considered to be the most important discovery in the history of biology. The Nobel citation refers to Charpentier’s and Doudna’s scientific contribution as a, “tool for rewriting the code of life”, which has “a revolutionary impact on the life sciences, by contributing to new cancer therapies and may make the dream of curing inherited diseases come true”.


For more than four years HealthPad has been following and publishing Commentaries on the scientists’ work. Our Commentaries have a large and growing global following of leading physicians, scientists, policy makers, journalists and students. The Commentaries listed below about CRISPR techniques, which we re-publish to celebrate Charpentier’s and Doudna’s Nobel Prize, have had more than 120,000 views.
 
Gene editing positioned to revolutionise medicine
1 Feb 2017

 
Gene editing battles
15 Mar 2017

 
Who should lead MedTech?
18 Jul 18
Base-editing next-generation genome editor with delivery challenges
17 oct 2018
CRISPR-Cas9 genome editing a 2-edged sword
31 Oct 2018
Will China become a world leader in health life sciences and usurp the US?
27 Feb 2019
view in full page
  • Chinese scientists lead the world in editing genomes of human embryos in order to develop new therapies for intractable diseases
  • US and UK regulators have given permission to edit the genes of human embryos
  • CRISPR-Cas9 has become the most common gene editing platform, which acts like is a pair of molecular scissors
  • CRISPR technology has the potential to revolutionize medicine, but critics say it could create a two-tiered society with elite citizens, and an underclass and have called for a worldwide moratorium on gene editing
  • Roger Kornberg, professor of medicine at Stanford University and 2006 Nobel Prize winner for Chemistry explains the science, which underpins gene-editing technology
  
Gene editing positioned to revolutionise medicine
 
It is a world first for China.
 
In 2015, a group of Chinese scientists edited the genomes of human embryos in an attempt to modify the gene responsible for β-thalassemia, a potentially fatal blood disorder. Researchers, led by Junjiu Huang from Sun Yat-sen University in Guangzhou, published their findings in the journal Protein & Cell.
 
In April 2016, another team of Chinese scientists reported a second experiment, which used the same gene editing procedure to alter a gene associated with resistance to the HIV virus. The research, led by Yong Fan, from Guangzhou Medical University, was published in the Journal of Assisted Reproduction and Genetics. At least two other groups in China are pursuing gene-editing research in human embryos, and thousands of scientists throughout the world are increasingly using a gene-editing technique called CRISPR-Cas9.
 
 

CRISPR-Cas9

Almost all cells in any living organism contain DNA, a type of molecule, which is passed on from one generation to the next. The genome is the entire sequence of DNA or an organism. Gene editing is the deliberate alteration of a selected DNA sequence in a living cell. CRISPR-Cas9 is a cheap and powerful technology that makes it possible to precisely “cut and paste” DNA, and has become the most common tool to create genetically modified organisms. Using CRISPR-Cas9, scientists can target specific sections of DNA, delete them, and if necessary, insert new genetic sequences. In its most basic form, CRISPR-Cas9 consists of a small piece of RNA, a genetic molecule closely related to DNA, and an enzyme protein called Cas9. The CRISPR component is the programmable molecular machinery that aligns the gene-editing tool at exactly the correct position on the DNA molecule. Then Cas9, a bacterial enzyme, cuts through the strands of DNA like a pair of molecular scissors. Gene editing differs from gene therapy, which is the introduction of normal genes into cells in place of missing or defective ones in order to correct genetic disorders.
 
Ground-breaking discovery 

The ground-breaking discovery of how CRISPR-Cas9 could be used in genome editing was first described by Jennifer Doudna, Professor of Chemistry and Cell Biology at the University of California, Berkeley, and Emmanuelle Charpentier, a geneticist and microbiologist, now at the Max Plank Institute for Infections in Berlin, and published in the journal Science in 2012.

In 2011 Feng Zhang, a bioengineer at the Broad Institute, MIT and Harvard, learned about CRISPR and began to work adapting CRISPR for use in human cells. His findings were published in 2013, and demonstrated how CRISPR-Cas9 can be used to edit the human genome in living cells.  

Subsequently, there has been a battle, which is on-going, between the scientists and their respective institution over the actual discovery of CRISPR’s use in human embryos, and who is entitled to the technology’s patents.
 
Gene editing research gathers pace worldwide: a few western examples

In 2016 a US federal biosafety and ethics panel licensed scientists at the University of Pennsylvania’s new Parker Institute of Cancer Immunotherapy to undertake the first human study to endow T-cells with the ability to attack specific cancers. Patients in the study will become the first people in the world to be treated with T-cells that have been genetically modified.

T-cells are designed to fight disease, but puzzlingly they are almost useless at fighting cancer. Carl June, the Parker Institute’s director and his team of researchers, will alter three genes in the T-cells of 18 cancer patients, essentially transforming the cells into super fighters. The patients will then be re-infused with the cancer-fighting T-cells to see if they will seek and destroy cancerous tumors.

Also in 2016, the UK’s Human Fertilisation and Embryology Authority (HFEA), which regulates fertility clinics and research, granted permission to a team of scientists led by Kathy Niakan at the Francis Crick Institute in London to edit the genes of human IVF embryos in order to investigate the causes of miscarriage. Out of every 100 fertilized eggs, fewer than 50 reach the early blastocyst stage, 25 implant into the womb, and only 13 develop beyond three months.
 
Frederick Lander, a development biologist at the Karolinska Institute Stockholm, is also using gene editing in an endeavour to discover new ways to treat infertility and prevent miscarriages. Lander is the first researcher to modify the DNA of healthy human embryos in order to learn more about how the genes regulate early embryonic development. Lander, like other scientists using gene-editing techniques on human embryos, is meticulous in not allowing them to result in a live birth. Lander only studies the modified embryos for the first seven days of their growth, and he never lets them develop past 14 days. “The potential benefits could be enormous”, he says.
 
Gene editing cures in a single treatment

Doctors at IVF clinics can already test embryos for genetic diseases, and pick the healthiest ones to implant into women. An advantage of gene editing is that potentially it could be used to correct genetic faults in embryos instead of picking those that happen to be healthy. This is why the two Chinese research papers represent a significant turning point. The gene editing technology they used has the potential to revolutionize the whole fight against devastating diseases, and to do many other things besides. The main benefit of gene editing therapy is that it provides potential cures for intractable diseases with a single treatment, rather than multiple treatments with possible side-effects.
 

The promise of gene editing for fatal and debilitating diseases
 
Among other things, gene editing holds out promise for people with fatal or debilitating inherited diseases. There are over 4,000 known inherited single gene conditions, affecting about 1% of births worldwide. These include the following:- cystic fibrosis, which each year affects about 70,000 people worldwide, 30,000 in the US, and about 10,000 in the UK; Tay-Sachs disease, which results in spasticity and death in childhood. The BRCA1 and BRCA2 inherited genes predispose women with a significantly greater chance of developing breast or ovarian cancer. Sickle-cell anaemia, in which inheriting the sickle cell gene from both parents causes the red blood cells to spontaneously “sickle” during a stress crisis; heart disease, of which many types are passed on genetically; haemophilia, a bleeding disorder caused by the absence of genetic clotting agent and. Huntington disease, a genetic condition which slowly kills victims by affecting cognitive functions and neurological status. Further, genomics play a significant role in mortality from chronic conditions such as cancer, diabetes and heart disease.
 
A world first

Huang and his colleagues set out to see if they could replace a gene in a single-cell fertilized human embryo. In principle, all cells produced as the embryo develops would then have the replaced gene. The embryos used by Huang were obtained from fertility clinics, but had an extra set of chromosomes, which prevented them from resulting in a live birth, though they did undergo the first stages of development. The technique used by Huang’s team involved injecting embryos with the enzyme complex CRISPR-Cas9, which, as described above, acts like is a pair of molecular scissors that can be designed to find and remove a specific strand of DNA inside a cell, and then replace it with a new piece of genetic material.
 
The science underpinning gene editing

In the two videos below Roger Kornberg, professor of medicine at Stanford University and 2006 Nobel Prize winner for Chemistry for his work on “transcription”, the process by which DNA is converted into RNA, explains the science, which underpins gene-editing technology:
 
How biological information, encoded in the genome, is accessed for all human activity

 
 
Impact of human genome determination on pharmaceuticals
 
An immature technology
 
Huang’s team injected 86 embryos, and then waited 48 hours; enough time for the CRISPR-Cas9 system, and the molecules that replace the missing DNA to act, and for the embryos to grow to about eight cells each. Of the 71 embryos that survived, 54 were genetically tested. Only 28 were successfully spliced, and only a fraction of those contained the replacement genetic material.
 
Therapy to cure HIV
 
Fan, the Chinese scientist who used CRISPR in an endeavor to discover a therapy for HIV/Aids, collected 213 fertilized human eggs, donated by 87 patients, which like embryos used by Huang, were unsuitable for implantation, as part of in vitro fertility therapy. Fan used CRISPR–Cas9 to introduce into some of the embryos a mutation that cripples an immune-cell gene called CCR5. Some humans who naturally carry this mutation are resistant to HIV, because the mutation alters the CCR5 protein in a way that prevents the virus from entering the T-cells it tries to infect. Fan’s analysis showed that only 4 of the 26 human embryos targeted were successfully modified.
 
Deleting and altering genes not targeted
 
In 2012, soon after scientists reported that CRISPR could edit DNA, experts raised concerns about “off-target effects,” where CRISPR inadvertently deletes or alters genes not targeted by the scientists. This can happen because one molecule in CRISPR acts like a bloodhound, and sniffs around the genome until it finds a match to its own specific sequence. Unfortunately, the human genome has billions of potential matches, which raises the possibility that the procedure might result in more than one match. 
 
Huang is considering ways to decrease the number of “off-target” mutations by tweaking the enzymes to guide them more precisely to a desired spot, introducing the enzymes in a different format in order to try to regulate their lifespans, allowing enzymes to be shut down before mutations accumulate; and varying the concentrations of the introduced enzymes and repair molecules. He is also, considering using other gene-editing techniques, such as LATENT.

 
The slippery slope to eugenics

Despite the potential therapeutic benefits from gene editing, critics suggest that genetic changes to embryos, known as germline modifications, are the start of a “slippery slope” that could eventually lead to the creation of a two-tiered society, with elite citizens, genetically engineered to be smarter, healthier and to live longer, and an underclass of biologically run-of-the-mill humans.
 
Some people believe that the work of Huang, Fan and others crosses a significant ethical line: because germline modifications are heritable, they therefore could have an unpredictable effect on future generations. Few people would argue against using CRISPR to treat terminal cancer patients, but what about treating chronic diseases or disabilities? If cystic fibrosis can be corrected with CRISPR, should obesity, which is associated with many life-threatening conditions? Who decides where the line is drawn?
 
40 countries have banned CRISPR in human embryos. Two prominent journals, Nature and Science, rejected Huang’s 2012 research paper on ethical grounds, and subsequently, Nature published a note calling for a global moratorium on the genetic modification of human embryos, suggesting that there are “grave concerns” about the ethics and safety of the technology.
 
A 2016 report from the Nuffield Council on Bioethics suggests that because of the steep rise in genetic technology, and the general availability of cheap, simple-to-use gene-editing kits, which make it relatively straightforward for enthusiasts outside laboratories to perform experiments, there needs to be internationally agreed ethical codes before the technology develops further.
 
Recently, the novelist Kazuo Ishiguro, among others, joined the debate, arguing that social changes unleashed by gene editing technologies could undermine core human values. “We’re coming close to the point where we can, objectively in some sense, create people who are superior to others,” says Ishiguro.
 
Takeaways

CRISPR has been described as the “Model T of genetics”.  Just as the Model T was the first motor vehicle to be successfully mass-produced, and made driving cheap and accessible to the masses, so CRISPR has made a complex process to alter any piece of DNA in any species easy, cheap and reliable, and accessible to scientists throughout the world. Although CRISPR still faces some technical challenges, and notwithstanding that it has ignited significant protests on ethical grounds, there is now a global race to push the boundaries of its capabilities well beyond its present limits.
 
view in full page