Sponsored
  • China is seen as a significant growth frontier for MedTech
  • Over the past 2 decades Western companies have derived billions from China
  • But today companies seeking or extending their franchises in China will encounter significant barriers
  • China is successfully decreasing its dependence on Western medical devices and other high-tech products and replacing them with domestic offerings
  • The choice facing Western companies expecting to derive revenues from China is: either localize your value chain and help China achieve its goals to dominate key industries globally or be progressively squeezed out of markets
  • Some Western companies have localized and manufacture their offerings in China
  • Some MedTech companies concerned about China’s weak intellectual property (IP) protection and buoyed by 2 decades of growth and the current performance of the US stock market are turning away from China
  • Could adherence to history dent their futures?
  
China’s rising MedTech industry and the dilemma facing Western companies

 
This is the first of two Commentaries on China.
 
Increased cost pressures, maturing home markets, resource constraints, growing regulatory pressures and rapidly changing healthcare ecosystems are driving Western MedTech companies to seek or expand their franchises in large fast-growing emerging economies. For many, the country of choice is China. AdvaMed, the American MedTech trade association says, “China presents the most significant growth market for the medical device industry today and for the foreseeable future.”

Despite only accounting for 3% of the global MedTech market share, China’s attraction is a US$14trn economy growing at some 7% per annum, a population of 1.42bn with a large, ageing middleclass with disposable incomes, rising healthcare consumption and Beijing’s commitment to increase healthcare expenditure to provide care for all its citizens from “cradle-to-grave”. All these factors drive China’s MedTech market and the certainty of its increasing demand.

Despite this positive scenario, there are an increasing number of non-tariff barriers facing Western MedTech companies in China. This is because Beijing has launched extensive and aggressive initiatives to decrease China's dependence on Western medical devices and replace them with domestic offerings. Opportunities in China for Western players are shrinking and becoming tougher as Beijing’s new healthcare reforms kick-in and Chinese MedTech companies strengthen, increase their capacity, move up the value chain and take a bigger share of the domestic markets. To compete effectively in China, Western companies need to enhance their understanding of Beijing’s extensive healthcare reforms, increase their understanding of the complexities of China’s new procurement processes and be prepared to localize their value chains.
 
In this Commentary

This Commentary is divided it into 2 parts.
  • Part 1: China an ‘el Dorado’ for Western MedTech companies describes the significant commercial benefits derived by some Western companies who, for the past two decades, have supplied high-end medical devices to the Chinese market and benefitted from: (i) Beijing’s commitment to extend healthcare to all citizens, (ii) the country’s vast, rapidly growing and underserved middleclass and (iii) China’s large and aging population with escalating chronic lifetime diseases. These market drivers have profited Western companies because domestic Chinese MedTech enterprises had neither the capacity nor the knowhow to produce high-end medical devices. This gave rise to a bifurcated MedTech market with domestic Chinese companies producing low-end offerings and Western companies supplying high-end products.
  • Part 2: China the end of the ‘el Dorado’ for Western MedTech Companies suggests that commercial opportunities in China for Western MedTech companies have shrunk significantly and become much tougher as domestic manufacturers, incentivized by Beijing, move up the value chain and capture a bigger share of the domestic market. We describe Made in China 2025 (MIC2025), which is a well-resourced government initiative aimed at decreasing China’s dependence on Western MedTech suppliers by enhancing the capacity and scale of Chinese companies. This, together with China’s current 5-year economic plan aimed at a “healthier China” and its 2009 healthcare reforms are already significantly effecting some segments of MedTech markets previously dominated by Western companies.


PART 1
 
 China an el Dorado for Western MedTech companies
 
China’s healthcare market and the MedTech sector
The attraction of China’s healthcare market to Western investors over the past decade is easy to comprehend. In 2013 China surpassed Japan to become the world’s second-largest healthcare market outside the US and the fastest growing of all large emerging markets. Healthcare spending is projected to grow from US$854bn in 2016 to US$1trn in 2020. In 2016, China’s healthcare expenditure as a proportion of its GDP was 6.32%, up from 4.4% in 2006, and this is expected to rise to between 6.5 and 7% by 2020. Although this is a lower percentage than that of the US with 17%, Germany with 11%, Canada, Japan and the UK with about 10%; it suggests that China’s healthcare market has a substantial upside potential; especially as the country’s middleclass grows and becomes economically stronger and Beijing’s healthcare reforms kick-in.
 
The attraction of China’s MedTech market to Western investors also is easy to understand. It is one of the fastest growing market sectors, which has maintained double-digit growth for over a decade. In 2016 China’s MedTech market was valued at US$54bn, an increase of 20% compared to 2015; 72% of which was fuelled by hospital procurements. In 2017 China imported more than US$20bn worth of high-end medical devices the overwhelming majority of which was supplied by Western companies.
 
Drivers of China’s MedTech markets
 
Three China market variables making for highly valued Western MedTech businesses include: (i) the country’s vast, rapidly growing and underserved middleclass, (ii) China’s large and aging population with escalating chronic lifetime diseases and (iii) Beijing’s commitment to extend healthcare to all of its citizens.

 
  1. Rapidly growing and underserved middleclass
China’s past rapid economic growth lifted hundreds of millions of its citizens out of poverty and into the middleclass. As China’s middleclass has grown, its healthcare market has expanded and the opportunities for Western MedTech companies have increased. This partly offsets slower demand experienced by Western MedTech companies after 2009 when middleclass consumers in developed countries were challenged by the shocks to their living standards caused by the 2008 recession and subsequent lower global economic growth.
 
Since 2015, Chinese middleclass consumers have become a significant driver of the country’s economic activity and are projected to remain so through at least 2025. Since 2000, annual real GDP growth per capita has averaged 8.9% while real personal disposable income on average has risen 9.2%. According to Credit Suisse’s Global Wealth Report, in 2015 China overtook the US as the country with the biggest middleclass, which is comprised of some 109m adults compared with 92m in the US. Today, the Chinese middleclass is facing more lifestyle related diseases, whilst expecting more and better healthcare. By 2025, China’s middleclass is projected to reach 600m and have an annual disposable income between US$10,000 and US$35,000. Further, compared to the US and the UK, China’s middleclass has a low level of household debt. China’s household debt-to-GDP ratio is 40% compared with 87% for that of the US and UK. This suggests that consumer led growth in China still has a significant upside. However, there are cultural obstacles to Chinese citizens assuming more personal debt.

 
  1. Large aging population with escalating chronic lifetime diseases
China has a population of 1.42bn and each year Chinese citizens give birth to some 20m. In January 2016 China lifted its 40-year-old one-child policy, which is expected to increase the country’s birth rate and increase the demand for in-vitro fertilization among older parents. Notwithstanding, partly because of the country’s falling fertility rates and partly the increasing life expectancy of the elderly share of the country’s population (In 2017 total life expectancy was 76.5), the number of elderly Chinese citizens has been increasing. According to China’s Office of the National Working Commission on Aging, in 2017 the number of its citizens aged 60 or above had reached 241m, accounting for some 17% of the total population and this is expected to peak at 487m, or 35%, around 2050, when it is projected that China will have 100m citizens over 80.

This is significant because elderly people have a higher incidence of disease, demand more frequent, longer and more complicated treatment regimens and use medical services more often than their younger counterparts. For example, China’s ageing population is fuelling the rise in demand for orthopaedic devices. Projections suggest that over the next decade China could become the world’s largest orthopaedic device market. As the Chinese population continues to age, demand for healthcare services and medical devices are expected to increase substantially. Notwithstanding, a ‘dependent’ large growing and aging population has a significant economic downside.
 
Further, the 600m Chinese citizens of prime earning age tend to live in large urban centres. China has some 662 cities; 6 of which are mega cities with populations of about 10m. 160 Chinese cities have populations in excess of 1m. Increased urbanization, changing diets and lifestyles and increased air pollution and other environmental hazards are causing a substantial rise in the prevalence of chronic lifetime diseases. It is estimated that 330m Chinese citizens currently have chronic diseases. According to a 2018 study almost 100m adults (8.6%) have chronic obstructive pulmonary disease (COPD), about 110m have diabetes and more than 80m Chinese citizens are handicapped. Altogether this creates a vast and growing demand for various high-end medical devices.

 
  1. Beijing’s commitment to extend healthcare to all citizens
A 3rd driver of China’s expanding healthcare sector is Beijing’s healthcare reforms launched in 2009 and its current 5-year economic plan, which prioritizes a "Healthy China". According to a 2016 World Bank report, ”Since the launch of the 2009 health reforms, China has substantially increased investment to expand health infrastructure; strengthened the primary-care system; achieved near-universal health insurance coverage in a relatively short period; reduced the share of out-of-pocket expenses - a major cause of disease-induced poverty - in total health spending; continued to promote equal access to basic public health services; deepened public hospital reform; and improved the availability, equity and affordability of health services. It has also greatly reduced child and maternal mortality and rates of infectious diseases and improved the health and life expectancy of the Chinese people.”
 
The share of healthcare expenses covered by the government is expected to increase from 30% in 2010 to 40% in 2020, but current regional differences in access to and quality of healthcare are expected to remain in the near term. China’s current economic plan, which was approved in 2015 and adopted in 2016 is responsible for a number of well-funded and aggressive healthcare reform programs, and increased investment in healthcare infrastructure. The plan also encourages private capital investment to improve service quality and meet the public’s diverse, complex and escalating healthcare needs.
 
Bifurcated MedTech market

These three healthcare drivers have significantly benefitted Western MedTech companies who leveraged their pre-existing products and business models and served China’s fast growing and underserved high-end MedTech markets with sophisticated medical devices. Chinese domestic MedTech companies, which today are comprised of about 16,000 small-to-medium sized light manufacturing enterprises on China’s east coast, participated in the low end of the global value chain and mostly produced Class I and II cheap disposable medical devices, which required simple forms of manufacturing or assembly, but created large numbers of jobs and made a significant contribution to poverty reduction. This mutual dependence gave rise to a bifurcated market and reflected the type of foreign direct investment that China attracted at the time and the relative lack of capacity of the domestic labour force.
 
The foreign sourced market segment has been served historically by large, well-resourced Western MedTech companies such as Medtronic, General Electric (GE), PhilipsSiemens, Zimmer Biomet  and DePuy Synthes. Before 2009, such companies enjoyed a near monopoly supplying their pre-existing high-end medical devices to large Chinese hospitals (see below). US MedTech companies were the #1 foreign supplier of such offerings, followed by Germany and Japan. These 3 countries represented the overwhelming majority share of China’s imports of medical devices.


PART 2

China the end of the el Dorado for Western MedTech companies
 
Between 2003 and 2009 foreign direct investment in China’s MedTech sector was concentrated in low-value-added activities. This pattern reversed during 2010-2018 and enabled Chinese MedTech companies to move up the value chain and develop more sophisticated manufacturing processes, increase their R&D capacity, enhance their post-market services and begin to penetrate more segments of the higher-value-added Class lll MedTech markets. As this happened so the predominance of Western MedTech companies providing high-end product offerings was reduced. This shift suggests that late entrants to the China market may struggle.
 
A 2017 survey conducted by China’s New Center for Structural Economics, covering 640 Chinese export-oriented labour-intensive companies across four sectors between 2005 and 2015 suggests that upgrading low-tech industries is pervasive throughout China. “’Technology upgrading’ was the firms’ most common response to their challenges: 31% of firms ranking it top and 54% in their top three responses. Tighter cost control over inputs and in production was next (top for 27% of firms) and changing product lines or expanding markets was third most common (24%)”, says the report.
 
Taking share from Western companies

To-date domestic Chinese MedTech companies have captured about 10% of the technologically intensive segments of endoscopy and minimally invasive surgery as measured by value, and 50% of the market in patient monitoring devices and orthopaedic implants. Only 5 years ago Western companies such as Zimmer Biomet  and DePuy Synthes controlled 80% of the Chinese high-end orthopaedic market segments. Further, about 80% of China’s market of drug-eluting stents, (medical devices placed into narrowed, diseased peripheral or coronary arteries, which slowly release a drug to block cell proliferation), which is another relatively high-end therapeutic device segment, is controlled by Biosensors InternationalLepu Medical, and MicroPort. These three Chinese companies market drug-eluting stents, on average, for about 40% less than their Western counterparts. Just over a decade ago 90% of this market was controlled by Western MedTech companies. Similarly, Chinese companies have increased their domestic market share of digital X-ray technologies to 50%. In 2004 they had zero share of this market.
 
Made in China 2025
 
In May 2015, Beijing launched “Made in China 2025” (MIC2025), which is a national strategy to enhance China’s competitive advantage in manufacturing. Increasing competition from developing nations with similarly competitive costs, coupled with technology-driven efficiency gains in developed countries, means that China’s abundance of cheap labour and the competitive advantage of its infrastructure will soon be insufficient to drive sustainable economic growth. MIC25 is expected to redress this by comprehensively upgrading, consolidating and rebalancing China’s manufacturing industry, and turning China into a global manufacturing power able to influence global standards, supply chains and drive global innovation.
 
The strategy names 10 sectors, including medical devices, which qualify for special attention to help boost the country’s goal of accelerating innovation and improving the quality of products and services. The initiative incentivizes domestic Chinese companies, including SMEs, to increase their usage of artificial intelligence and digital technologies to move up the value chain and capture a greater market share from their Western counterparts. MIC2025 is explicit about China reducing its reliance on Western imports and includes subsidies, loans and bonds to support and encourage domestic companies to: (i) continue increasing their capacity, (ii) devise lean business models that emphasize “affordability”, (iii) increase their R&D, (iv) expand their franchises overseas, and (v) acquire foreign enterprises with cutting-edge technologies. The initiative  also addresses issues of quality, consistency of output, safety and environmental protection, which are all considered strategic challenges to China’s development.
 
Beijing expects MIC2025 to increase the market share of Chinese-produced medical devices in the country’s hospitals to 50% by 2020 and 70% by 2025, enable Chinese companies to compete with Western MedTech giants by 2035 and make China a world MedTech leader by “New China’s” 100th birthday in 2049. The initiative is expected to quickly spread beyond China’s borders as its leading manufacturers seek to develop global supply chains and to access new markets. MIC25 is important for the next stage of China’s emergence as an economic superpower and its ambition to design and make the products of the future required not only by the Chinese consumer, but consumers around the world.
 
US attempts to halt MIC25

While many Western countries are debating how to respond to MIC25 Washington sees the initiative as a well-defined, well-orchestrated strategy, which is “unfair and coercive” because it includes government subsidies and the “forced transfer” of technology and IP to enable the Chinese to “catch-up and surpass” American technological leadership in advanced industries.  An August 2018 US Council for Foreign Relations response says, “MIC25 relies on discriminatory treatment of foreign investment, forced technology transfers, intellectual property theft, and cyber espionage”. In June 2018 Washington sought to halt the policy by levying punitive tariffs on Chinese imports into the US and blocking Chinese-backed acquisitions of American technology companies.
 
The commercial effects of increased tariffs are unclear

It is not altogether clear how successful Washington’s punitive tariffs will be because they could unsettle the US medical supply industry given that a growing number of product offerings marketed in the US are made in China. MRIs, pacemakers, sonograms and other medical devices manufactured in China and imported into the US are all included in the list of items subject to the increased US tariffs. Some estimates suggest that the tariffs will cost the American medical device industry more than US$138m in 2018, and about US$1.5bn every year there after. According to AdvaMed, the US enjoys a trade surplus with China for medical products and rather than grow US productivity, the tariffs could result in less trade and a smaller surplus in medical devices. Whilst protectionist, the MIC25 initiative is permitted under World Trade Organization rules as China is not a signatory to the Agreement on Government Procurement, which covers state run hospitals. Further, historically healthcare products have been excluded from tariffs on humanitarian grounds and because they are seen as an asset to public health.
 
Western companies ‘encouraged’ to localize their value chains
 
Although Beijing is seeking to reduce its dependence on imported medical devices, it has not shut-out Western companies who are expected to continue to be significant high-tech market players in the short to medium term. This is because such international trade is crucial to facilitate China’s access to global knowhow and technology. But Beijing has amended its procurement and reimbursement policies to incentivise hospitals to purchase domestically manufactured medical devices and introduced tough conditions on companies seeking to do business in China. To qualify for inclusion in China’s new hospital procurement arrangements Western companies are obliged to localize their value chains and partner with domestic enterprises. Some companies have done so, while others have been reluctant to localize their value chains because of China’s weak record of IP protection. Beijing is aware of this and is streamlining and strengthening its IP prosecution system (see below).
 
Western importers seriously handicapped
 
Importers who choose not to localize their value chains face a number of significant non-tariff barriers. Unlike other Asian countries such as Japan, China has no national standard for tendering and bidding and there are significant differences between its 34 provincial administrations and 5 automatous regions. Further, China has a dearth of large ‘general’ distributors. Western MedTech companies importing product offerings into China are obliged to engage small-scale distributors dedicated to one sector, one imported brand and one type of product. Such distributors are ill-equipped to effectively navigate China’s vast hospital sector (see below) and its complex, rapidly changing and disaggregated procurement and reimbursement processes. A clash of sales cultures is a further disadvantage for Western MedTech companies’ whose marketing mindset is product-centric territory driven, while winning sales strategies in China and in other emerging markets are customer-centric key-account driven.
 
China’s vast hospital sector
 
One dimension of the challenges faced by Western MedTech companies who are obliged to engage small-scale distributors is the enormity of China’s hospital sector. China has about 30,000 hospitals, which have increased from about 18,700 in 2005, serving a population four and a half times that of the US across a similar land mass. By comparison, the US has some 15,500 hospitals and England 168 NHS hospitals. About 26,000 hospitals in China are public and some 4,000 are private. Although public hospitals in China provide the overwhelming majority of healthcare services, this is changing.  Recently, Beijing has loosened its regulations and private sector healthcare has witnessed an influx of private capital. Over the next decade, China’s private healthcare sector is expected to see new hospital chains, expansion of existing hospitals and improvements in a range of private healthcare services. Currently, Western participation in the Chinese private healthcare market is nascent but expected to grow over the next decade.
 
China’s hospitals provide about 5.3m beds, compared with about 890,000 in the US and 142,000 NHS beds in the UK. Chinese public hospitals, which are the biggest consumers of Western medical devices, are categorized into 3 tiers according to their size and capabilities. The largest are tier-3 hospitals of which there are about 7,000. These are 500-bed-plus national, provincial or big city hospitals, which provide comprehensive healthcare services for multiple regions as well as being centres of excellence for medical education and research. There are about 1,500 tier-2 hospitals, which are medium size city, county or district hospitals. Together teir-2 and 3 hospitals represent about 3.5m acute beds. Tier-1 hospitals are township-based and do not provide acute services. There is a range of specialist hospitals, which are also significant users of imported high-end medical devices. Further, Beijing is beginning to develop primary care facilities, which are normal in North America and Europe, but underdeveloped in China.
 
Mega private hospitals
 
Healthcare in China has traditionally been the monopoly of the central government. However, Beijing’s recent relaxation of the rules on private investment referred to above has triggered an explosion in the number of private healthcare facilities and the development of mega hospitals on a scale not seen elsewhere in the world. For example, Zhengzhou Hospital, which is nearly 700km south of Beijing and can be reached by bullet train in under 3 hours at a cost of about US$45, was officially opened in 2016 and was dubbed the “largest hospital in the universe”. Zhengzhou is a mega-city with a population of 10m and is the capital of east-central China's Henan province. The hospital has some 10,000 beds, facilities are spread across several buildings and over 28 floors and it has its own fire department and police station. In 2015, the hospital admitted some 350,000 inpatients and treated 4.8m people. In one day in February 2015 the hospital received 20,000 out-patients. 
Centralizing procurement
 
Most noticeable among the changes taking place in China’s procurement processes for domestically produced medical devices is the development of centralized e-commerce facilities, which are expected to increase efficiency and reduce spiralling hospital costs. The initiative is a partnership, announced in 2018, between IDS Medical Systems and Tencent’s digital healthcare subsidiary WeDoctor, to establish China’s first smart medical supply chain solutions and procurement company, which in the near term, is expected to dominate the Chinese market by becoming the “Amazon of healthcare”. Tencent is the world’s 6th largest social media and investment company and IDS Medical Systems is a Hong Kong based medical supply company with an extensive Asia-Pacific distribution network, which represents over 200 global medical brands in medical devices and consumables. 
 
WeDoctor, was founded in 2010 to provide online physician appointment bookings, which is an issue in China and patients often stand in-line for hours from 2 and 3 in the morning outside hospitals to get brief appointments with physicians. From this modest beginning WeDoctor has rapidly evolved into a US$5.5bn company, which employs big data, artificial intelligence and other digital tools to deliver cutting-edge healthcare solutions and support services to over 2,700 Chinese hospitals, 240,000 doctors, 15,000 pharmacies and 160m platform users; and these numbers are expected to increase significantly in the next few years.
 
Underpinning WeDoctor’s business model and differentiating it from Western endeavours such as Google’s DeepMind, is the freedom in China to collect and use patient data on a scale unparalleled in the West. WeDoctor is designed to leverage Tencent’s significant complementary strengths, innovative resources and networks in order to centralize device procurement by connecting domestic MedTech companies with China’s vast hospital network. WeDoctor’s ability to manage petabytes of patient data, its knowledge of and favoured position in China’s hospital procurement processes, its rapid and sophisticated distribution capacity and central government support, positions WeDoctor to have a significant impact on the procurement of medical devices in China and beyond in the next five years, and this is expected to provide domestic companies with a further competitive edge.
 
Localizing the value chain in China

Manufacturing in China has been an option only for larger Western MedTech companies with the necessary management knowhow, business networks and finance to bear the costs. Companies which have localized their value chains and support the MIC25 initiative include Medtronic and GE Healthcare.
 
Medtronic
Medtronic, the world’s largest MedTech company, has had a presence in China for the past 2 decades and has established local R&D facilities to design products specifically for the needs of the Chinese market and crafted partnerships with provincial governments to help educate patients about under-served therapeutic areas. In 2012 Medtronic acquired Kanghui Medical, for US$816m. In December 2017 the Chinese government approved sales of a new pacemaker, which is the product of a strategic partnership between Medtronic and Lifetech Scientific Corporation. In January 2012 Medtronic paid US$46.6m for a 19% stake in Lifetech and a further US$19.6m for a convertible loan note. The agreement called for LifeTech to develop a line of pacemakers and leads using its manufacturing plant in Shenzhen, (population 13m). Medtronic supplied “technology, training and support” and LifeTech provided local market expertise, brand recognition and growth potential within China. The alliance has made Lifetech the first Chinese domestic manufacturer with an implantable cardiac pacing system with world-class technology and features. In 2015 Medtronic entered into a partnership with the Chengdu’s (population 14.4m) municipal government in the south west of China to enable people with diabetes in Chengdu and the broader Sichuan province (population 87m) to access a new, locally produced next generation sensor augmented pump system with Medtronic’s SmartGuard technology and software displayed in the Chinese language. Medtronic’s 2017 revenues from its China operations amounted to US$1.6bn, 5% of total revenues, and US$3.4bn from other Asia-Pacific countries, 12% of total revenues.
 
GE Healthcare
GE Healthcare is the largest medical device manufacturer in China and China is a key manufacturing base for GE. GE started conducting business in China in 1906 and today has over 20,000 employees across 40 cities in the country. One third of GE's ultrasound probes, half of its MRIs and two thirds of its CT scanners, which are marketed globally are manufactured in the Chinese cities of Wuxi, Tianjin and Beijing respectively. These devices and others are now subject to a punitive US tariff levied in June 2018. “We remain concerned that these tariffs could make it harder for US manufacturers to compete in the global economy, and will shrink rather than expand US exports,” says Kelly Sousa, a GE Healthcare spokesperson.
 
Rachel Duan, president and CEO of GE China explains that, “GE China has been investing in people, processes and technologies throughout the value chain so that it can design, manufacture and service products closer to customers. This goes beyond market and sales localization, to product R&D, manufacturing and product services." GE has pinpointed localization, partnership, and digitization as the three key initiatives to drive its future development in China. In May 2017 GE opened an Advanced Manufacturing Technology Center in Tianjin, its first outside the US, and has partnered with over 30 Chinese engineering, procurement and construction (EPC) companies. "With a global footprint and depth of localized capabilities in China, we are partnering with customers and helping them win both in China and worldwide by connecting machines, software, and data analytics to unlock industrial productivity," says Duan. 

 
Changing IP environment
 
Medtronic and GE Healthcare provide object lessons of how best Western MedTech companies might leverage commercial opportunities in China. But many remain reluctant to manufacture in China because historically the country’s legal system has been weak in prosecuting IP infringements and more recently they have been further handicapped by Washington’s response to MIC25. For many years, when dealing with China, Western companies have faced a combination of IP challenges, which included litigation with low level damages, an inability to effectively enforce judgments, an inability to patent certain subject matter and a lack of transparency on legal issues. This amounts to substantial disincentives for Western companies to localize their value chain in China. However, the country’s IP environment is changing. In 2017 Beijing spent some US$29bn for the rights to use foreign technology, with the amount paid to US companies increased by 14% year-on-year. China’s IP legal system is maturing and has improved in the scope of allowable patent subject matter to enhancements of litigation options. However, Western reluctance to localize production in China is not only influenced by the country’s weak IP protection and recent trade tensions with the US, but also by ethical concerns and the perceived need for more predictable rules and institutions about environmental and regulatory issues.
 
All this, together with two decades of growth in developed nations and the continued performance of the US stock market might be enough for some MedTech companies to turn-away from China, but could such a reaction dent their futures?

 
Takeaways

This Commentary describes some of the near-term challenges facing Western MedTech companies looking to offset increasing challenges in their home markets by extending their franchises in China. We have suggested why operationalizing this strategy in the short term will be tougher than 5 years ago, especially if Western MedTech companies are reluctant to innovate and transform their strategies and business models. China presents a challenging dilemma for Western companies: either they manufacture in China and support that nation’s endeavours to become a world class manufacturing platform or they progressively get squeezed out of markets. Whatever Western companies decide, we can be sure that their near to medium term futures will be shaped by maturing developed world markets, encumbered by short termism and aging infrastructures and a rising Chinese economic power with state-of-the-art infrastructures and significantly enhanced capacities and capabilities. But how long can China sustain its rise?
view in full page

Cost-effective asset to relieve growing pressure on GPs

Can the escalating primary care crisis in England be helped with a new and innovative online dashboard, which automatically sends short videos contributed by clinicians to patients’ mobiles to address their FAQs?
 
Dr Seth Rankin, Managing Partner of the Wandsworth Medical Centre, and co-chair of Wandsworth CCG’s diabetes group, who has spearheaded the dashboard, thinks it can. Click on the photo below to view a short video that describes how health professionals can use the dashboard:
 
 
 
New and innovative dashboard
 
A 24/7 fully automated service that never wears out
We were motivated to do something about the increasing pressure on GPs, and the impact this has on the quality of our care. Patients may have to wait a couple of days for an appointment with a GP, but they can receive our videos within minutes of their request,” says Rankin. He continues: “A pilot study we carried out in two London primary care practices suggested that video is a patient’s preferred format if they can’t see a GP. Further, patients often don’t retain what you tell them in a 10-minute face-to-face consultation, and they tend not to read pamphlets, which also are expensive to produce. 53% of patients regularly search the Internet for healthcare information, but 81% can’t differentiate between good and bogus information. 72% prefer healthcare information from their GP, and like healthcare videos delivered directly to their mobiles. 70% want access to healthcare information at any time, from anywhere, on their mobiles.
 
“Unlike the Internet, our dashboard provides premium reliable information, which can be easily consumed and shared among family, friends and carers. Also, the videos can be viewed many times, from anywhere, and unlike pamphlets and doctors, they never get tired, never wear out, and are available 24/7, 365 days a year. The dashboard is fully automated [see figure below], relieves GPs of a lot of unnecessary work, and, importantly, reports on how our patients’ are using the different videos.”
 
Automated system that encourages engagement behaviours
 
Local experts
“We used local medical experts in our videos because we were keen to increase their connectivity with our patients. The videos provide 60 to 80 second talking-head answers to patients’ questions, and are designed to increase patients’ knowledge of their condition, propel them towards self-management, slow the onset of complications, and reduce face-time with GPs, while enhancing the quality of our care,” says Rankin.
 
Diabetes
He continues: “Although the dashboard easily can be used for any disease state, we started with T2DM as it represents our largest group of patients. Also, we know that: (i) T2DM is preventable with effective education that encourages diet and lifestyle changes, (ii) current diabetes education fails, and over the past decade, the incidence rate of the condition has increased by 65%, (iii) only 16% of the 120,000 people diagnosed each year with diabetes in England are offered structured educational courses, and (iv) only 2% of those offered courses actually enrol in them. So, we created our own bespoke dashboard and content library of about 120 videos, which we organised under 10 headings that we know interest our patients. Each heading has a cluster of ‘essential’ and ‘in-depth’ videos. We use the dashboard to relieve some of the pressure on our health professionals.”
 
Unprecedented crisis
 
Saturation point
A 2016 study published in The Lancet suggests that between 2007 and 2014 the workload in NHS general practice had increased by 16%, and that it is now reaching saturation point. According to Professor Richard Hobbs of Oxford University and lead author of the study, "For many years, doctors and nurses have reported increasing workloads, but for the first time, we are able to provide objective data that this is indeed the case . . . . . As currently delivered, the system [general practice in England] seems to be approaching saturation point . . . . . Current trends in population growth, low levels of recruitment and the demands of an ageing population with more complex needs will mean consultation rates will continue to rise.”
 
More than 1m patients visit GP every day
A 2014 Deloitte’s report commissioned by the Royal College of General Practitioners (RCGP) suggests that the GP crisis in England is the result of chronic under-funding and under-investment in primary care at a time when the demand for GP services is increasing as the population is ageing, and there is a higher prevalence of long term conditions and multi-morbidity.
 
According to the RCGP, over the past five years the number of annual GP consultations has increased by 60 million to around 370 million, while over the same period the number of GPs has grown by only 4.1%. More than one million patients a day visit their GP surgeries, with some GPs now routinely seeing between 40 to 60 patients daily.
 
GPs are extremely stressed
Deloitte’s findings are confirmed by a 2016 comparative study undertaken by the prestigious Washington DC-based Commonwealth Fund, which concludes that increasing workloads, bureaucracy and the shortest time with patients has led to 59% of NHS GPs finding their work either “extremely” or “very” stressful: significantly higher stress levels than in any other western nation. GP stress levels are likely to increase. In a speech made in June 2015, the UK’s Secretary of Health said, “Within 5 years we will be looking after a million more over-70s. The number of people with three or more long term conditions is set to increase by 50% to nearly three million by 2018. By 2020, nearly 100,000 more people will need to be cared for at home.” According to Dr Maureen Baker, chair of RCGP, “Rising patient demand, excessive bureaucracy, fewer resources, and a chronic shortage of GPs are resulting in worn-out doctors, some of whom are so fatigued that they can no longer guarantee to provide safe care to patients.”
 
Causes and consequences
 
GP exodus
Trainee GPs are dwindling and young GPs are moving abroad. According to data from the General Medical Council (GMC), between 2008 and 2014 an average of 2,852 certificates were issued annually to enable British doctors to work abroad. We now have a dangerous situation where there are hundreds of vacancies for GP trainees. Meanwhile, findings from a 2015 British Medical Association (BMA) poll of 15,560 GPs found that 34% of respondents plan to retire in the next five years because of high stress levels, unmanageable workloads, and too little time with patients.
 
Suggested solutions
 
5,000 more GPs by 2020
In the run up to the UK’s 2015 General Election the Secretary of Health pledged “to train and retain an extra 5,000 GPs by 2020” to ease the primary care crisis, but doctors’ leaders did not see this as a solution. Dr Maureen Baker said, "Even if we were to get an urgent influx of extra funding and more GPs, we could not turn around the situation [the GP crisis] overnight due to the length of time it takes to train a GP,” And Dr Chaand Nagpaul, chair of the BMA GPs’ committee, warned later that, “delivering 5,000 extra GPs in five years, when training a GP takes 10 years, was a practical impossibility that was never going to be achieved.” After the election the Health Secretary softened his promise and suggested that it would be ‘a maximum' of 5,000 by 2020.

In 2016, Pulse, a publication for GPs, suggested that the Health Secretary knows he cannot deliver his promise of 5,000 new doctors by 2020, and is negotiating with Apollo Hospitals, an Indian hospital chain, to bring 400 Indian GPs to England.
 
A more innovative approach

Better and smarter solutions needed
While searching for an immediate temporary solution to the GP crisis the Secretary of Health seems to understand that a more innovative approach is required for the medium to long term. In his June 2015 speech he said, “If we do not find better, smarter ways to help our growing elderly population remain healthy and independent, our hospitals will be overwhelmed – which is why we need effective, strong and expanding general practice more than ever before in the history of the NHS. Innovation in the workforce skill mix will be vital too in order to make sure GPs are supported in their work by other practitioners.”
 
Pharmacists in GP surgeries
In July 2015 the NHS launched a £15m pilot scheme, supported by the RCGP and the Royal Pharmaceutical Society (RPS), to fund, recruit and employ clinical pharmacists in GP surgeries to provide patients with additional support for managing medications and better access to health checks.
 
Dr Maureen Baker said, “GPs are struggling to cope with unprecedented workloads and patients in some parts of the country are having to wait weeks for a GP appointment yet we have a ‘hidden army’ of highly trained pharmacists who could provide a solution”. Dr David Branford, former Chair of the RPS said, “It’s a win-win situation . . . .  We will be doing everything we can to support the GPs and make sure this pilot is successful. In time, I hope pharmacists will be working in every GP practice in the country.” Ash Soni, president of the RPS suggests that it makes sense for pharmacists to help relieve the pressure on GPs, and says, “Around 18m GP consultations every year are for minor ailments. Research has shown that minor aliment services provided by pharmacists can provide the same treatment results for patients, but at lower cost than at a GP surgery.”
 
Progressive and helpful move
The efficacy for an enhanced role of pharmacists in primary care has already been established in the US, where retail giants such as CVS, Walgreens and Rite Aid have led the charge in providing convenient walk-in clinics staffed by pharmacists and nurse practitioners. Over time, Americans have grown to trust and value their relations with pharmacists, which has significantly increased adherence to medications, and provided GPs more time to devote to more complex cases. Non-adherence is costly, and can lead to increased visits to A&E, unnecessary complications, and sometimes death. According to a New England Healthcare Institute report, Thinking Beyond the Pillbox, failure to take medication correctly, costs the US healthcare system $300 billion annually, and results in 125,000 deaths every year. 
 
Takeaway
 
Introducing pharmacists into GP surgeries is a progressive and potentially helpful move forward, because, as Dr Maurine Baker suggests, “It is in everyone’s best interests to be seen by a GP who is not stressed or fraught and who can focus on giving their patients the time, attention and energy they need”. However, even more could be achieved if the dashboard described by Dr Seth Rankin were more widely introduced. “Videos play a similar role to practice-based pharmacists. Both deal with simple day-to-day patient questions, and relieve pressure on GPs, which allows them to focus their skills where they are most needed,” says Rankin.
.
 
view in full page
MedTechs Battle with AI for Sustainable Growth and Enhanced Value
 
Preface
 
The medical technology industry has experienced significant growth, consistently surpassing the S&P index by ~15 percentage points. This success is rooted in the early 1990s, a time when capital was costly, with interest rates ~10%. However, as we moved closer to 1998, interest rates began to recede, settling just below 7%. This early era of growth was not devoid of challenges. The US was still grappling with the aftermath of the oil embargo imposed in 1973 by the Organization of the Petroleum Exporting Countries (OPEC), which was a response to the American government's support for Israel during the Yom Kippur War and had lasting consequences. The oil crisis triggered hyperinflation, leading to a rapid escalation in the prices of goods and services. In response, the US Federal Reserve (Fed) raised interest rates to a historic high of 17% in 1981, which was aimed at curbing inflation but came at the price of increasing the cost of borrowing. As we entered the 1990s, the landscape shifted. The Fed’s monetary policies began to work, inflation started to decline, and interest rates fell to ~10%, eventually dipping below 7% in 1998. This created conditions for increased investments in research and development (R&D) and the American economy blossomed and benefitted from the internet becoming mainstream. It was during this period that many medical technology companies developed innovative medical devices, which were not only disruptive but also found a receptive global market characterized by significant unmet needs and substantial entry barriers. In the ensuing years, the industry thrived and matured. Fast-forward to the present (2023), and we find ourselves in a different scenario. Over the past five years, numerous large, diversified MedTechs have struggled to deliver value. One explanation for this is that growth of these enterprises over the past three decades, except for the early years, was primarily driven by mergers and acquisitions (M&A), often at the expense of prioritizing R&D. Consequently, many large MedTechs did not leverage evolving technologies to update and renew their offerings and are now heavily reliant on slow-growth markets and aging product portfolios. Navigating a successful path forward would be helped by a comprehensive embrace of artificial intelligence (AI) and machine learning (ML) strategies, since these technologies possess the potential to transform how MedTechs operate, innovate, and serve their stakeholders.
 
In this Commentary

This Commentary explores the role of artificial intelligence (AI) in reshaping the future landscape of the MedTech industry in pursuit of sustainable growth and added value. We focus on the impact AI can have on transforming operational methodologies, fostering innovation, and enhancing stakeholder services. Our aim is to address five key areas: (i) Defining Artificial Intelligence (AI): Describes how AI differs from any other technology in history and sheds light on its relevance within the MedTech sector. (ii) Highlighting AI-Driven MedTech Success: In this section, we preview three leading corporations that have utilized AI to gain access to new revenue streams. (iii) Showcasing a Disruptive AI-Powered Medical Device: Here, we provide an overview of the IDx-DR system, an innovation that has brought disruptive change to the field of ophthalmology. (iv) The Potential Benefits of Full AI Integration for MedTechs: This section briefly describes 10 potential benefits that can be expected from a comprehensive embrace of AI by MedTechs. (v) Potential Obstacles to the Adoption of AI by MedTechs: Finally, we describe some obstacles that help to explain some MedTechs reluctance to embrace AI strategies. Despite the substantial advantages that AI offers, not many large, diversified enterprises have fully integrated these transformative technologies into their operations. Takeaways outline the options facing enterprises.
 
Part 1

Defining Artificial Intelligence (AI)

Artificial Intelligence (AI) is a ground-breaking concept that transcends the simulation of human intelligence. Unlike human cognition, AI operates devoid of consciousness, emotions, and feelings. Thus, it is indifferent to victory or defeat, tirelessly working without rest, sustenance, or encouragement. AI empowers machines to perform tasks once exclusive to human intelligence, including deciphering natural language, recognizing intricate patterns, making complex decisions, and iterating towards self-improvement. AI is significantly different to any technology that precedes it. It is the first instance of a tool with the unique capabilities of autonomous decision making and the generation of novel ideas. While all predecessor technologies augment human capabilities, AI takes power away from individuals.
You might also like:

Forging a path for digital excellence in the MedTech Industry


Unleashing MedTech's Competitive Edge through Transformational Technologies
AI employs various techniques, including machine learning (ML), neural networks, natural language processing, and robotics, enabling computers to autonomously tackle increasingly complex tasks. ML, a subset of AI, develops algorithms that learn, adapt, and improve through experience, rather than explicit programming. The technology’s versatile applications span image and speech recognition, recommendation systems, and predictive analytics. In the quest to comprehend the intersection of artificial and human intelligence, we encounter Large Language Models (LLMs), like ChatGPT, which recently have gained prominence in corporate contexts. These advanced AI models grasp and generate human-like text by discerning patterns and context from extensive textual datasets. LLMs excel in language translation, content generation, and engaging in human-like conversations, effectively harnessing our linguistic abilities.


Part 2

Highlighting AI-Driven MedTech Success

This section briefly describes three examples of MedTechs that have successfully leveraged AI technologies to illustrate how AI’s growing influence drives improvements in accuracy, efficiency, patient outcomes and in the reduction of costs, which together, and in time, are positioned to transform healthcare.
 
Merative, formally Watson Health, a division of IBM that specialised in applying AI and data analytics to healthcare. In 2022, the company was acquired by Francisco Partners, an American  private equity firm, and rebranded Merative. The company leverages AI, ML, and LLMs to analyse extensive medical datasets that encompass patient records, clinical trials, medical literature, and genomic information. These technologies empower healthcare professionals by facilitating more informed decisions, identifying potential treatment options, and predicting disease outcomes. For instance, Merative employs ML to offer personalised treatment recommendations for cancer patients based on their medical histories and the latest research. Integrating LLMs enables natural language processing to extract insights from medical literature, helping healthcare providers stay current with scientific and medical advancements.
 
Google Health, a subsidiary of Alphabet Inc., focuses on using AI and data analysis to improve healthcare services and patient outcomes. It employs AI and ML to develop predictive models that can identify patterns and trends in medical data, which improve early disease detection and prevention. One notable application is in medical imaging, where the company's algorithms can assist radiologists to identify anomalies in X-rays, MRIs, and other images. LLMs are used to interpret and summarize medical documents, making it easier for healthcare professionals to access relevant information quickly. Google Health also works on projects related to drug discovery and genomics, leveraging ML to analyze molecular structures and predict potential drug candidates.
Medtronic is a global leader in medical technology, specializing in devices and therapies to treat various medical conditions. The company incorporates AI, ML, and LLMs into their devices and systems to enhance patient care. For instance, in the field of cardiology, Medtronic's pacemakers and defibrillators collect data on a patient's heart rhythms, which are then analyzed using AI algorithms to detect irregularities and adjust device settings accordingly. This real-time analysis helps to optimize patient treatment. Medtronic also employs AI in insulin pumps for diabetes management that can learn from a patient's blood sugar patterns and adjust insulin delivery accordingly. Additionally, LLMs are used to extract insights from electronic health records (EHR) and clinical notes, which help healthcare providers to make more personalized treatment decisions.
You might also like:
 

 
Part 3

Showcasing a Disruptive AI-Powered Medical Device

AI has been applied to various medical imaging tasks, including interpreting radiological images like X-rays, CT scans, and MRIs and there are numerous AI-driven medical devices and systems that have emerged and evolved in recent years. As of January 2023, the US Federal Drug Administration (FDA) has approved >520 AI medical algorithms, the majority of which are related to medical imaging. Here we describe just one, the IDx-DR system, which was developed by Digital Diagnostics. In 2018, it became the first FDA-approved AI-based diagnostic system for detecting diabetic retinopathy. If left untreated, the condition can lead to blindness. Globally, the prevalence of the disease among people living with diabetes is ~27% and every year, >0.4m people go blind from the disorder. In 2021, globally there were ~529m people with diabetes, which is expected to double to ~1.31bn by 2050.
 
The IDx-DR device utilizes AI algorithms to analyze retinal images taken with a specialized camera and accurately detects the presence of retinopathy that occurs in individuals with diabetes when high blood sugar levels cause damage to blood vessels in the retina. Significantly, the device produces decisions without the need for retinal images to be interpreted by either radiologists or ophthalmologists, which allows the system to be used outside specialist centres, such as in primary care clinics. Advantages of the system include: (i) Early detection, which can improve outcomes and quality of life for individuals with diabetes. (ii) Efficiency. The system analyzes images quickly and accurately, providing results within minutes, which allows healthcare providers to screen a larger number of patients in a shorter amount of time. (iii) Reduced healthcare costs. By detecting retinopathy at an early stage, the system helps prevent costly interventions, such as surgeries and treatments for advanced stages of the disease, which can lead to significant cost savings for healthcare systems. (iv) Patient convenience. Patients undergo retinal imaging as part of their regular diabetes check-ups, reducing the need for separate appointments with eye specialists, which encourages enhanced compliance.

 
Part 4

The Potential Benefits of Full AI Integration for MedTechs

Large, diversified MedTechs stand to gain significant benefits by fully embracing AI technologies that extend across all aspects of their operations, innovation, and overall value propositions. In this section we briefly describe 10 such advantages, which include enhanced innovation, improved patient outcomes, increased operational efficiency, cost savings, and access to new revenue streams. Companies that harness the full potential of AI will be better positioned to thrive in the highly competitive and rapidly evolving healthcare industry.
 
1. Enhanced innovation and product development
AI technologies have the potential to enhance R&D endeavours. They accomplish this through the ability to dig deep into vast repositories of complex medical data, identifying patterns, and forecasting outcomes. This translates into a shorter timeline for the conception and creation of novel medical technologies, devices, and therapies. In essence, AI quickens the pace of innovation in healthcare. The capabilities of AI-driven simulations and modeling further amplifies its impact. These virtual tools enable comprehensive testing in a digital environment, obviating the need for protracted physical prototyping and iterative cycles, which can shorten the development phase and conserve resources, making the innovation process more cost-effective, and environmentally sustainable.
 
2. Improved patient outcomes
Beyond improving the research landscape, AI improves the quality of patient care by enhancing diagnostic precision through the analysis of medical images, patient data, and clinical histories. Early detection of diseases becomes more precise and reliable, leading to timelier intervention and improved patient outcomes. Additionally, AI facilitates the personalization of treatment recommendations, tailoring them to individual patient profiles and current medical research. This optimizes therapies and increases the chances of successful outcomes and improved patient wellbeing.
 
3. Efficient clinical trials
Increasingly AI algorithms are being used in clinical studies to identify suitable patient cohorts for participation in trials, effectively addressing recruitment challenges and streamlining participant selection. Further, predictive analytics play a role in enhancing the efficiency of trial design. By providing insights into trial protocols and patient outcomes, AI reduces both the time and costs associated with bringing novel medical technologies to market, which speeds up the availability of treatments and facilitates the accessibility of healthcare innovations to a broader population.
 
4. Operational efficiency
Operational efficiency is improved with the integration of AI technologies by refining operations. AI-driven supply chains and inventory management systems play a significant role in optimizing procurement processes. They analyze demand patterns, reduce wastage, and ensure the timely availability of critical supplies. By doing so, companies can maintain uninterrupted operations, enhancing their overall efficiency and responsiveness. Another component of operational efficiency lies in predictive maintenance, which can be improved by AI. Through continuous monitoring and data analysis, AI can predict equipment failures before they occur. Such a proactive approach minimizes downtime and ensures manufacturing facilities remain compliant and in optimal working condition. Consequently, healthcare providers experience improved operational efficiency, strengthened compliance, and a reduction in costly disruptions. The automation of routine tasks and processes via AI relieves healthcare professionals from repetitive duties and frees up resources that can be redirected towards more strategic and patient-centric initiatives. This reallocation reduces operational costs while enhancing the quality of care provided.
 
5. Cost savings
Beyond automation, AI-driven insights further uncover cost efficiencies within healthcare organizations. AI identifies areas where resource allocation and utilization can be optimized, which can result in cost reduction strategies that are both data-informed and effective. AI's potential extends to the generation of innovative revenue streams. Corporations can develop data-driven solutions and services that transcend traditional medical devices. For instance, offering AI-driven diagnostic services or remote patient monitoring solutions provides access to new revenue streams. Such services improve patient care and contribute to the financial sustainability of enterprises. Further, AI-enabled healthcare services lend themselves to subscription-based models, ensuring consistent and reliable revenue over time. Companies can offer subscription services that provide access to AI-powered diagnostics, personalized treatment recommendations, or remote monitoring, which have the capacity to diversify revenue streams and enhance longer-term financial stability.
 
6. New revenue streams
AI's ability to analyze vast datasets positions MedTechs to unravel the interplay of genetic, environmental, and lifestyle factors that shape individual health profiles. With such knowledge, personalized treatment plans and interventions can be developed, ensuring that medical care is tailored to each patient's unique needs and characteristics. This level of customization optimizes outcomes and minimizes potential side effects and complications. AI's ability to process vast amounts of patient data and detect patterns, anomalies, and correlations, equips healthcare professionals with the knowledge needed to make more informed decisions. Such insights extend beyond individual care, serving as the basis for effective population health management and proactive disease prevention strategies. In short, AI transforms data into actionable intelligence, creating a basis for more proactive and efficient healthcare practices.
You might also like:

Leaning-in on digital and AI
7. Regulatory compliance and safety
In an era of stringent healthcare regulations, AI is a reliable ally to ensure compliance and enhance safety standards. Through automation, AI streamlines documentation, data tracking, and quality control processes, reducing the risk of errors and oversights. Also, AI-powered systems excel in the early detection of anomalies and potential safety issues, which increase patient safety and the overall quality of healthcare solutions and services. This safeguards patient wellbeing and protects the reputation and credibility of companies.
8. Competitive advantage
MedTechs that are early adopters of AI stand to gain a distinct competitive advantage. They can offer AI-powered solutions and services that deliver superior clinical outcomes and improve overall patient experience. By harnessing the potential of AI, companies can position themselves as leaders in innovation and technological capabilities, likely drawing a loyal customer base, valuable partnerships, collaborations, and investments.
 
9. Talent attraction and retention
Embracing AI technologies also has an impact on talent attraction and retention. The allure of working on novel AI projects that improve lives attracts scarce tech-savvy professionals who seek to be part of dynamic, purposeful, and forward-thinking teams. Such talent contributes to a skilled workforce capable of extending the boundaries of AI innovation within MedTech companies. Further, fostering a culture of innovation through AI adoption encourages employee engagement and job satisfaction, leading to improved talent retention.
 
10. Long-term sustainability
The integration of AI goes beyond immediate advantages; it positions MedTechs for longer-term strategic growth and resilience. As the healthcare landscape continues to evolve, adaptability and innovation become more important. AI enables companies to adapt to changing market dynamics, navigate regulatory challenges, and remain relevant amidst industry transformations. By staying at the forefront of technological advancements, companies ensure their relevance and contribute to shaping the future healthcare landscape.
 
Part 5

Potential Obstacles to the Adoption of AI by MedTechs

The integration of AI technologies into numerous industries has demonstrated its potential to significantly enhance operations, improve R&D, and create new revenue streams. However, despite AI’s potential to contribute significant benefits for business enterprises, its adoption by many large, diversified medical technology companies has been limited and slow. This section describes some factors that help to explain the reluctance of senior MedTech executives to fully embrace AI technologies, which include an interplay of organizational, technical, and industry-specific issues. Without overcoming these obstacles, MedTechs risk losing the growth and value creation they once experienced in an earlier era.

Demographics of senior leadership teams
According to Korn Ferry, an international consultancy and search firm, the average age for a C-suite member is 56 and their average tenure is 4.9 years, although the numbers vary depending on the industry. The average age of a CEO across all industries is 59. If we assume that the MedTech industry mirrors this demographic, it seems reasonable to suggest that many corporations have executives approaching retirement who may be more risk averse and oppose the comprehensive introduction of AI technologies due to a fear of losing benefits they stand to receive upon retirement.

Organizational inertia and risk aversion
Large medical technology companies often have well-established structures, processes, and cultures that resist rapid change. In such an environment, executives might be hesitant to introduce AI technologies due to concerns about disrupting existing workflows, employee resistance to learning new skills, and the fear of failure. The risk-averse nature of the medical technology industry, where patient safety is critical, further amplifies executives' cautious approach to implementing unproven AI solutions.
 

Technical challenges and skill gaps
AI implementation requires technical expertise and resources. Many MedTech executives might lack a deep understanding of AI's technical capabilities, making it difficult for them to evaluate potential applications. Further, attracting and retaining AI talent is highly competitive, and the scarcity of professionals skilled in both medical technology and AI can hinder successful implementation.
Regulatory and ethical concerns
The medical field is heavily regulated to ensure patient safety and data privacy. Incorporating AI technologies introduces additional layers of complexity in terms of regulatory compliance and ethical considerations. Executives might hesitate to navigate these legal frameworks, fearing potential liabilities and negative consequences if AI systems are not properly controlled or if they lead to adverse patient outcomes.
Long development cycles and uncertain ROI
The R&D cycle in the medical technology industry is prolonged due to rigorous testing, clinical trials, and regulatory approvals. Although AI technologies have the capabilities to enhance R&D efficiency, they can introduce additional uncertainty and complexity, potentially extending development timelines. Executives could be apprehensive about the time and resources required to integrate AI into their R&D processes, especially if the return on investment (ROI) remains uncertain or delayed.
 

Industry-specific challenges
The medical technology industry has unique challenges compared to other sectors. Patient data privacy concerns, interoperability issues, and the need for rigorous clinical validation can pose barriers to AI adoption. Executives might view these complexities as additional hurdles that could hinder the successful implementation and deployment of AI solutions.
  

Existing Revenue Streams and Incremental Innovation
Many large, diversified MedTechs generate substantial revenue from their existing products and services. Executives might be reluctant to divert resources towards AI-based ventures, fearing that these investments could jeopardize their core revenue streams. Additionally, a culture of incremental innovation prevalent in the industry might discourage radical technological shifts like those associated with AI.

 
Takeaways
 
Hesitation among MedTechs to integrate AI technologies poses the threat of missed opportunities, diminished competitiveness, and sluggish growth. This reluctance hinders innovation and limits the potential for enhanced patient care. Embracing AI is not an option but a strategic imperative. Failure to do so means missing opportunities to address unmet medical needs, explore new markets, and access new revenue streams. The potential for efficiency gains, streamlined operations, and cost reductions across R&D, manufacturing and supply chains is significant. Companies fully embracing AI gain a competitive advantage, delivering innovative solutions and services that improve patient outcomes and cut healthcare costs. Conversely, those resisting AI risk losing market share to more agile rivals. AI’s impact on analysing vast amounts of complex medical data, accelerating discovery, and enhancing diagnostics is well established. MedTechs slow to leverage AI may endure prolonged R&D cycles, fewer breakthroughs, and suboptimal resource allocation, jeopardising competitiveness and branding them as ‘outdated’. In today’s environment, attracting top talent relies on being perceived as innovative, a quality lacking in AI-resistant MedTechs. As AI disrupts industries, start-ups and smaller agile players can overtake established corporations failing to adapt. A delayed embrace of AI impedes progress in patient care, diagnosis, treatment, and outcomes, preventing companies from realising their full potential in shaping healthcare. The time to embrace AI is now to avoid irreversible setbacks in a rapidly evolving MedTech ecosystem.
view in full page
 
  • Psoriasis is a serious chronic inflammatory disorder of the immune system
  • It affects more than 90m people worldwide: 1.2m in Britain, 7.5m in the US
  • The condition runs in families
  • Symptoms include red patches of skin covered with silvery scales that itch and burn
  • 30 to 40% of people with psoriasis may experience psoriatic arthritis, which may lead to chronic pain, disability and sometimes; mutilating joint disease
  • New drugs are changing the prospects for people with psoriasis and psoriatic arthritis
  • Dr. Sonya Abraham, Imperial College London, and British Psoriatic Arthritis Consortium describes some of the causes of psoriasis, and prospects for future therapies
 
At war with my skin and joints
 
The novelists John Updike and Vladimir Nabokov, among others, suffered from psoriasis, which significantly influenced and shaped their respective lives.
 
Psoriasis affects more than 100m people worldwide: 1.2m in Britain, and 7.5m in the US. 30 to 40% of these can experience psoriatic arthritis. In 2014, the WHO recognized psoriasis as a serious chronic non-communicable disease, and suggested that people with the condition suffer needlessly because of, “incorrect or delayed diagnosis, inadequate treatment options and insufficient access to care, and because of social stigmatization”.


Therapies for psoriasis include a range of topical and systemic medications as well as phototherapy. Many of the systemic therapies can also reduce the pain and disability from arthritis and other manifestations of the condition.
 
Health professionals have been somewhat constrained by the limited therapies specifically for psoriasis, but this is beginning to change. New treatments are improving the prospects for people with psoriasis, and psoriatic arthritis. “The outlook is good for the millions of people with the conditions”, says Dr. Sonya Abraham of Imperial College London, and a member of the British Psoriatic Arthritis Consortium (Brit-PACT):
 
 

Psoriasis

Psoriasis is a serious chronic inflammatory disorder triggered by an immune systems fault that causes the over production of skin cells. It runs in families, and has an unpredictable course of symptoms. It mainly presents in adults, usually before the age of 35.

Psoriasis mostly affects the skin and joints, and usually occurs on the scalp, knees, elbows, hands and feet. It also may affect the fingernails, the toenails, the soft tissues of the genitals and the inside of the mouth. The condition is characterized as ‘mild’, ‘moderate’, and ‘severe’ according to the amount of body surface area (BSA) affected and the severity of redness, thickness, and scaling of the skin. Approximately 80% of those affected have mild to moderate disease, while 20% have moderate to severe psoriasis affecting more than 5% of the body surface area. The most common form of psoriasis affecting about 80 to 90% of psoriasis patients, is ‘plaque psoriasis’, which is characterized by patches of raised, reddish skin covered with silvery-white scale. There are other forms of psoriasis, including inverse, erythrodermic, pustular, guttate and nail disease. 

 
Psoriatic arthritis and associated conditions

Below Sonya Abraham describes some of the causes of psoriatic arthritis and the effects that the condition may have on various organs of the body. Up to 40% of people with psoriasis experience joint inflammation that produces symptoms of arthritis. Psoriatic arthritis can lead to chronic pain and change in physical appearance. Patients suffering from psoriatic arthritis have reduced physical fitness, compared to psoriasis patients without arthritis. Typically, psoriatic arthritis occurs in conjunction with longstanding skin lesions, but it can occur in the absence of psoriasis.

Psoriasis and psoriatic arthritis may be associated with other diseases and conditions. The incidence of Crohn’s disease and ulcerative colitis, two types of inflammatory bowel disease, is 3.8 to 7.5 times greater in psoriasis patients than in the general population. Patients with psoriasis also have an increased incidence of lymphoma, heart disease, obesity, type-2 diabetes and metabolic syndrome. Depression and suicide, smoking, and alcohol consumption are also more common in psoriasis patients.
 
 
Causes of psoriatic arthritis

What does psoriatic arthritis do to the body?

Living with psoriasis

Updike was affected by psoriasis throughout his whole life, and his writings provide a vivid insight into the significant physical and psychological challenges that sufferers face. In his book Self Consciousness he devotes a chapter to the condition, and in 1985 he wrote a personal history of his psoriasis for The New Yorker entitled, “At War with My Skin”.
 
Updike says that he became a writer because of his psoriasis: “writers do not have to be presentable”. He married young because he found a person “who forgave” his skin, and moved to a small town in Massachusetts near a beach where he could swim and sunbath to relieve his symptoms. During the cold New England winters Updike moved to the Caribbean where he could continue to swim and sunbathe. The stress of leaving his wife in 1974 aggravated his condition, which resulted in a failure of his salt water and sun therapy. Consequentially, he enrolled in what was then an experimental light therapy, which, together with some systemic medication cleared his skin.
 
Nabokov was deeply disturbed by his psoriasis, which he tried to conceal, except to people close to him.  In 1937, after suffering a bad attack, he wrote to his wife describing his agony, "I continue with the radiation treatments every day, and am pretty much cured. You know, now I can tell you frankly, the indescribable torments I endured before these treatments, drove me to the border of suicide; a border I was not authorised to cross because I had you in my luggage”.
 
Treatment options for psoriasis

Updike and Nabokov’s descriptions provide insights of the devastating impact that psoriasis can have on the quality of life. Until recently, there has been few drugs specifically targeted for psoriasis, but this is beginning to change and the outlook for people with psoriasis and psoriatic arthritis looks promising. Here we describe some of the new medications that have recently come to market. But before doing so, we briefly describe current therapies.
  
Mild to moderate psoriasis
 
Mild to moderate psoriasis is managed with topical therapies, which are not very effective. These include coal tar, emollients, salicylic acid, topical retinoids and corticosteroids, and forms of vitamin D, which can sometimes be used together with other medications.
 
People with moderate to severe psoriasis may be treated with traditional systemic medications, phototherapy or biologic agents. In cases of more extensive psoriasis, topical agents may be used in combination with phototherapy, or traditional systemic or biologic medications. Phototherapy includes narrowband and broadband ultraviolet B (UVB), and furocoumarins plus UVA (PUVA), which have to be used sparingly because light therapies may increase the risk of skin cancer.
 
Psoriatic arthritis therapies
 
In the video below, Sonya Abraham describes some of the conventional therapies for psoriatic arthritis. Medical treatment regimens for the condition include the use of non-steroidal anti-inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic drugs (DMARDs). Conventional therapy usually consists of NSAIDs and local corticosteroid injections, with DMARDs being reserved for NSAID-resistant cases. However, because 40% of patients may develop erosive and deforming arthritis the early use of more aggressive treatment with DMARDs may be warranted.
 
DMARDs include methotrexate, sulfasalazine, cyclosporine, and leflunomide, as well as biologic agents, such as monoclonal antibodies targeting tumour necrosis factor therapies (TNF) - alpha, interleukin-12/23 (IL-12), IL-17, or IL-23.
 
In September 2013, the US Food and Drug Administration (FDA) approved ustekinumab, an IL-12/23 inhibitor, for the treatment of active psoriatic arthritis in adults who have not responded adequately to previous treatment with non-biologic DMARDs. The drug was already approved in Europe and the US for treatment of moderate to severe psoriasis plaques in adults.
 
 

Monoclonal antibodies
 
A monoclonal antibody is an antibody produced by a single clone of cells, and is therefore a single pure type of antibody. Monoclonal antibodies can be made in large quantities in a laboratory, and are a cornerstone of immunology, and increasingly are being introduced as therapeutic agents. The anti-Tumour necrosis Factor Therapies, (anti-TNF) monoclonal antibody biologics include adalimumab, certolizumab, golimumab, infliximab, and the fusion protein, etanercept. All have FDA and EU approvals. Immunology is a branch of biomedical science that covers the study of all aspects of the immune system in all organisms.

 
New drugs
 
Secukinumab
 
Secukinumab is an immunosuppressant that reduces the effects of a chemical substance in the body that can cause inflammation. It works by blocking a certain natural protein in your body (interleukin-17A) that may cause inflammation and swelling. Marketed by Novartis as Cosentyx®, it is the first drug to target psoriatic arthritis, and could help those who suffer from the worst effects of the condition. The therapy is self-administered by a monthly injection, and is aimed at the parts of the immune system known to make proteins called interleukins, which are believed to be faulty in the amounts of serum they release. Up to 84% of psoriatic arthritis patients treated with Cosentyx® at two years had no radiographic progression in their joints. Clinical studies found 80% of patients saw a 75% improvement after using the drug for 12 weeks. 70% saw a 90% improvement by week 16. 405 found their symptoms disappeared completely.
 
Mark Tomlinson, from Novartis, the drug manufacturer, said: “In those without psoriasis, the immune system is like an orchestra; each section perfectly balanced and working harmoniously together. When a person has psoriasis, it is like one violinist in the orchestra playing out of tune. It dominates the sound and rhythm. IL-17A is like a maverick violinist”.
 
Apremilast

 
Apremilast is a recently licenced oral drug for psoriasis and psoriatic arthritis, which inhibits the phosphodiesterase enzyme, which in turn has affects on regulating pro and anti-inflammatory cytokines and proteins such and TNF and IL-17. In randomised control studies, Apremilast has shown improvement in psoriasis skin and arthritis disease activity assessments.
 
Ixekizumab

 
Another new anti-IL-17 drug, ixekizumab a cloned antibody, has been approved for treating adult patients with moderate to severe plaque psoriasis (covering 10% or more of the body) who are candidates for phototherapy or medications that are absorbed into the blood stream (systemic therapy). Ixekizumab has been shown to clear symptoms in 80% of people. Research published in the New England Journal of Medicine in 2016, suggests that Ixekizumab neutralises the inflammatory effects of an interleukin, a protein in the skin that carries signals to cells.
 
To test the drug's efficacy over time, three studies enrolled 3,736 adult patients at more than 100 study sites across 21 countries. Researchers assessed whether the drug reduced the severity of the symptoms of psoriasis compared to a placebo, and evaluated its safety by monitoring any side effects. By 12 weeks, 76 to 82% of people in the study had their condition classified as 'clear' or 'minimal'; compared to 3.2% of patients in the placebo. By 60 weeks, 69 to 78% showed their improved condition had been maintained. Kenneth Gordon, professor of dermatology at Northwestern University, and the first author of the study, said: 'Based on these findings, we expect that 80% of patients will have an extremely high response rate to ixekizumab, and about 40% will be completely cleared of psoriasis.”
 
Takeaway 

None of these new drugs represent a magic bullet, but they do appear to provide significant relief for a substantial percentage of sufferers of psoriasis and psoriatic arthritis.
 
view in full page
  • CanRisk is a new online gene-based health-risk evaluation algorithm for detecting breast cancer
  • It identifies people with different levels of risk of breast cancer, not just those at high risk
  • As the infotech and biotech revolutions merge expect authority in medicine to be transferred to algorithms
  • CanRisk has the potential to provide a cheap, rapid, non-invasive, highly sensitive and accurate diagnosis before symptoms present
  • Breast cancer is the most common cancer in women worldwide and is the 5th most common cause of death from cancer in women
  • Currently mammography screening, which has a sensitivity between 72% and 87%, is the gold standard for preventing and controlling breast cancer
  • For every death from breast cancer that is prevented by screening, it is estimated there will be three false-positive cases that are detected and treated unnecessarily
  • Lack of resources do not support breast cancer screening in many regions of the world where the incidence rates of the disease are rapidly increasing
  • In the near-term expect interest in the CanRisk algorithm to increase
 
 A new comprehensive gene-based breast cancer prediction device

 
A new online gene-based health-risk evaluation device called CanRisk has the potential to identify women with different levels of risk of breast cancer; not just women who are at high risk. Predicated on a comprehensive algorithm, CanRisk is one of several innovations currently in development, which include novel methods for predicting the recurrence of breast cancer, a new class of molecules that aim to halt or destroy breast cancer, and liquid biopsies, which determine the presence and recurrent risk of the disease through the detection of tumour cells in peoples’ blood.
 
Although over the past two decades there have been significant improvements in the detection and treatment of breast cancer, the disease remains the most common cancer in women worldwide, with some 1.7m new cases diagnosed each year, which account for about 25% of all cancers in women and it is the fifth most common cause of death from cancer in women, with over 0.52m deaths each year.
 
Game changer for breast cancer
 
Findings of CanRisk were reported in the January 2019 edition of Genetics in Medicine. Findings of a less comprehensive version of the device’s algorithm were published in the July 2016 edition of the same journal. Commenting on the 2019 study, Antonis Antoniou, Professor of Cancer Risk Prediction at the University of Cambridge and lead author of the two studies said: "This is the first time that anyone has combined so many elements into one breast cancer prediction tool. It could be a game changer for breast cancer and help doctors to tailor the care they provide depending on their patients' level of risk”.
 
When fully developed and approved, CanRisk will be well positioned to provide a cheap, rapid, non-invasive, highly sensitive and accurate diagnostic test to detect breast cancer early in people with diverse levels of risk. This might be expected to provide an alternative to the current gold standard population-based mammography screening and assist in making a significant dent in the vast and escalating global burden of the disease.
 
In this Commentary
 
This Commentary describes the algorithm that drives CanRisk, which benefits from the increasing availability of vast and growing amounts of genomic and other personal data and significant advances in genomic sequencing technologies. The confluence of these two phenomena facilitates and enhances the quality and speed of data analysis and drives the development of new and innovative diagnostic and prognostic cancer technologies. The fact that CanRisk is based on UK data and its algorithm is available to researchers globally, presents a potential  opportunity for medical research organizations in emerging regions of the world where the burden of breast cancer is increasing. The Commentary briefly describes the heterogeneous nature of breast cancer and highlights some of its complexities and risk factors. Originally perceived as a Western disease, breast cancer is growing rapidly in Asia and other regions of the world where it tends to be detected late and managed less effectively. Developed economies prevent and manage breast cancer through well-established population-based mammography screening programs. Because of  the lack of resources,  such screening programs are not widely available in low to middle income countries (LMIC). As the infotech and biotech revolutions merge expect authority in medicine to be transferred to Big Data algorithms such as CanRisk. This not only could provide an alternative to gold standard mammography screening, but also provide a cheap and effective device for use in developing nations where the burden of breast cancer is significant and increasing.
 
CanRisk: a world first
 
CanRisk, developed by members of the Centre for Cancer Genetic Epidemiology at the University of Cambridge, UK, takes advantage of discoveries in both cancer genomics and epidemiology and aims to become a popular device used by primary care physicians, in consultation with their patients, to effectively assess patients’ diverse levels of risk of developing breast cancer. The device is predicated on an algorithm called BOADICEA (the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm). This is the world’s first polygenic breast cancer risk model and the only one to-date, which is available to the international research community. Also, it is the first breast cancer risk model to incorporate pathology data and population-specific cancer incidences in risk calculations. The algorithm accounts for over 300 genetic risk factors, including BRCA1, [BReast CAncer gene] BRCA2PALB2CHEK2, and ATM, which are genes that have been found to impact a person’s chances of developing breast cancer. The device uses a Polygenic Risk Score (PRS) based on 313 single-nucleotide polymorphisms (SNPs), [SNPs, pronounced ‘snips’, are the most common types of genetic variation in people. Each SNP represents a difference in a single DNA building block and is called a nucleotide] which explains 20% of breast cancer polygenic variance. CanRisk also includes a residual polygenic component, which accounts for other genetic/familial effects; known lifestyle/hormonal/reproductive risk factors and mammographic density [Dense breast tissue can make it harder to evaluate mammographic results and may also be associated with an increased risk of breast cancer].

 

Authority increasingly being transferred to algorithms
 
Over the past two decades we have increasingly learnt to accept the authority of Big Data algorithms. For example, without question we expect algorithms to give us directions, tell us what movies to watch, who to date, what clothes to wear, where to go on holiday, what flight to take, what hotel to stay in and where to eat. We are  comfortable with algorithms assigning us our credit rating, limiting our overdraft and capping our payments. Furthermore, we are beginning to accept the authority of algorithms in medicine. For example, we are gradually replacing the authority of primary care doctors with algorithms that can diagnose common diseases more accurately and more cost effectively.


You might also be interested in:

China’s rising MedTech industry and the dilemma facing Western companies

In December 2018, for the first time in history, the US FDA approved an algorithm to diagnose patients without a doctor’s interpretation. The algorithm, called IDx-DR, detects diabetic retinopathy by analysing images of the back of the eye. Indeed, we are living on the cusp of history when the twin revolutions of information technology and biotechnology are merging and providing the basis for us to transfer authority in medicine to algorithms. In the next two decades, it seems reasonable to assume that it will become common practice to accept the authority of algorithms such as CanRisk, which will inform us that we are suffering from a medical condition long before we present any signs or symptoms.
 
Increasing supply of data
 
CanRisk takes advantage of the fact that genetic and other risk factor data are becoming more easily available in clinical practice through electronic health records, biometric sensors that convert biological processes into electronic information, which computers can store and analyse, cost-effective high speed, high capacity genomic sequencing technologies, and efforts such as the 100,000 Genomes ProjectA UK Government sponsored initiative completed in December 2018, which collected, stored and analysed data from the genomes and medical records of 85,000 NHS England patients affected by cancer or rare disease. Genomics Englandwhich is wholly owned by the UK’s Department of Health, was set up in 2003 to deliver the project. Because CanRisk solely is based on UK population data, its findings are likely to be more applicable to similarly developed Western populations, and less so to populations in other regions of the world. This provides a potential opportunity for international organizations interested in early breast cancer diagnosis. 
 
International sequencing projects
 
The UK’s genomes project is part of a much larger rapidly growing and dynamic global genomics market comprised of data and gene sequencing technologies. 100,000 genomes have been the goal of several other nations interested in improving their healthcare - and lowering costs  - by carrying out precision medicine based on insights from sequencing data. Currently the global genomics market is estimated to be about US$19bn and projected to reach US$41bn by 2025. The market is driven by increasing government funding, the consequent rise  in the number of genomics projects, decreasing gene sequencing costs, growing application areas of genomics and the entry and fast growth of commercial players.

China has become the world’s leader in genomic sequencing. In 2010, the Beijing Genomics Institute (BGI) in Shenzhen was understood to be hosting a higher sequencing capacity than that of the entire US. While most government projects aim to sequence 100,000 genomes, China’s sequencing program is set to sequence 1m human genomes, which include subgroups of 50,000 people, each with specific conditions such as cancer or metabolic disease. The data will also include cohorts from different regions of China, which will facilitate “the analysis of different genetic backgrounds of subpopulations”.
 

Revolution in genome sequencing
 
The first human genome project began in 1990, took 13 years and about US$1bn to complete. The last two decades have seen a revolution in genome sequencing with dramatic increases in its speed and efficiency coupled with massive reductions in cost. Genomic sequencing has proved its usefulness as a diagnostic and prognostic tool. Today it is possible to get your genome sequenced for around US$1,000 in a few days and delivered by  post from firms such as Dante Labs and 24 Genetics in Europe, and Veritas Genetics and Sure Genomics in the US.
 
Breast cancer
 
Returning to breast cancer. It is important to note that the disease is not one, but  a group of conditions that manifest themselves with maladies in the same organ. Breasts are comprised of three main parts: lobules, which produce milk; ducts, which carry milk to the nipples; and fibrous and fatty connective tissue, which hold everything together. The type of breast cancer depends on which cells in the breast mutate, but most breast cancers begin in the ducts or lobules. Some mutated cells in the breast may never spread, however, most breast cancers tend to be invasive and may present with a number of different characteristics in terms of hardness and shape, which can provide some indication of their likely progression. Breast cancer can spread outside the breast through blood and lymph vessels. Further, there are significant differences in breast cancer at the genetic level. A study published in the April 2012 edition of Nature compared the genetic makeup of breast cancer tumour samples with their other characteristics for some 2,000 women, for whom information about the tumour characteristics had been meticulously recorded; and identified at least 10 distinct sub-types of breast cancer, each with its own unique characteristics. Although the study contributed to how breast cancer is diagnosed, classified and treated, in practice certain characteristics of these tumours were already known and tested for: most notably cellular receptors for estrogen, and progesterone, which are the two most significant steroid hormones responsible for various female characteristics. Their presence or absence generally suggests the potential utility of additional medication to accompany surgery, radiotherapy and chemotherapy.

 
Despite population screening and advanced therapies breast cancer remains a killer disease
 
Let us briefly consider breast cancer in the world’s most advanced and wealthiest nation: the US. Although there have been significant improvements in the detection and treatment of breast cancer in the US; still about 1 in 8 American women will develop an invasive type of the disease over the course of her lifetime. In 2019, an estimated 268,600 new cases of invasive breast cancer are expected to be diagnosed in the US, along with 62,930 new cases of non-invasive (in situ) breast cancer. Breast cancer death rates for women in the US are higher than those for any other cancer, besides lung cancer. As of January 2019, there were more than 3.1m women with a history of breast cancer in the US. Although breast cancer death rates in the US have been decreasing over the past three decades and women under 50 have experienced larger decreases, still some 41,760 are expected to die in 2019 from the disease. About 2,670 new cases of invasive breast cancer are expected to be diagnosed in men in the US in 2019 where a man’s lifetime risk of breast cancer is about 1 in 883.
 
Breast cancer challenges in Singapore
 
There are also breast cancer challenges in wealthy non-Western developed economies such as Singapore. Over the past four decades, the incidence of breast cancer in Singapore has more than doubled: from 25 to 65 per 100,000 women. Breast cancer is not just the most common cancer for Singaporean women, accounting for one in three cancers in women, but it is also the top killer. Data reported in the country’s Cancer Registry showed that 2,105 women died of the disease between 2011 and 2015. Notwithstanding, Singapore has extensive awareness-raising programs; population-wide mammography screening; excellent, multi-disciplinary primary and long-term care and improving palliative care, which have contributed to a significant increase in the survival rates of breast cancer patients. However, a substantial proportion of Singaporean women still appear to have a patchy knowledge of aspects of the disease, which leads to comparatively low participation rates in the nation’s breast cancer screening services, and this contributes to late presentation of the disease when it is more difficult to cure and more challenging to treat.

You might also be interested in:

Breast cancer and harmful BRCA gene mutations


AstraZeneca’s strategy to target early cancer
Breast cancer growing rapidly in Asia
 
Breast cancer was once largely confined to developed Western countries and Australasia, but it has now become the most common cancer in Asia. Although Asian data on breast cancer are patchy, an Economist Intelligence Unit report, suggests that, “since the 1990s, increases in the incidence of breast cancer in Asia, as measured by age-standardised rates (ASRs), is four to eight times that of the global average”. Indeed, as younger cohorts of Asian women age and adopt Western diets and lifestyles (particularly fertility patterns, such as later first childbirth and shorter breast feeding), breast cancer incidence rates in Asia look set to converge with the much higher ones in the West.
 Further, in LMIC breast cancer is increasing at a more rapid rate than in the West and has become a significant healthcare challenge: 50% of breast cancer cases and 58% of deaths from the disease occur in LMIC.
 The significance of early detection
 
The good news is that if caught in its early stages, breast cancer can be treated effectively, with high survival rates. The average 5-year survival rate for women with invasive breast cancer is 90%. The average 10-year survival rate is 83%. If the cancer is located only in the breast, the 5-year survival rate of women with breast cancer is 99%. In all types of the disease early detection is the cornerstone of breast cancer control.
 
 Gold standard breast cancer mammography screening
 
The current gold standard for preventing and controlling breast cancer is population-based mammography screening. This is a non-invasive process that uses an x-ray of the breast to look for disease in women who do not have symptoms. The method has reasonable sensitivity (72%–87%) that increases with age and allows for the early detection of breast cancer, which helps increase survival, especially in women between 50 and 70. Notwithstanding, mammograms are not pleasant as the breast is squashed between two metal plates and further some women may find mammograms embarrassing.
 
Success of population-based mammography screening
 
Following a landmark Swedish study that began in 1977 mammography screening has been adopted in more than 26 developed countries worldwide. Findings of the study, reported in a 1989 edition of the Journal of Epidemiology and Community Health, suggested that mortality from breast cancer dropped 31% after screening of women aged 39 to 74. More recent findings of the UK screening program published in the June 2013 edition of the British Journal of Cancer, suggested mortality rates from breast cancer were reduced by 20% in the screened group compared to the unscreened group across all age groups. A study published in 2018 in Cancer, which tracked 52,438 Swedish women aged 40-69 from 1977 to 2015, suggested that regular mammograms contributed to a 60% decrease in breast cancer death during the first 10-years of diagnosis, and a 47% reduced risk within 20-years. Research has shown that mammography has relatively little benefit for women under 50.
 
Diverging views about mammography screening
 
Despite evidence to support the benefits of population-based mammography screening, there are diverging views among healthcare professionals about the impact of several decades of high levels of screening. Some argue that traditional mammography screening stretches finite resources and is not cost-effective because the majority of people who undergo screening do not have cancer and may never go on to develop it. Others suggest that there are significant uncertainties about the magnitude of the harms from mammography screening especially associated with false positives (a test result, which wrongly indicates that breast cancer is present).

Challenges of mammography screening
 
The sensitivity of mammography is between 72% and 87%, but is higher in women over 50 and in women with fatty rather than dense breasts. Dense breast tissue can make it harder to evaluate results of a mammogram. According to the Marmot review, for every death from breast cancer that is prevented by screening, it is estimated there will be three over-diagnosed or false-positive cases that are detected and treated unnecessarily. The chance of having a false positive result after one mammogram ranges from 7% to 12%, depending on age (younger women are more likely to have false positive results). After 10 yearly mammograms, the chance of having a false positive is about 50-60%. The more mammograms a woman has, the more likely it is she will have a false positive result. This makes it difficult for doctors to weigh and communicate the benefits and risks of mammography screening programs and fuels interest in innovations such as CanRisk.
 
Takeaways
 
Mammography screening for breast cancer is not 100% accurate. Further, knowhow, trained healthcare professionals and significant resources are required to effectively implement and manage a well-organized and sustainable breast cancer screening program that targets the right population group and ensures effective coordination and quality of actions across the whole continuum of care. These attributes tend to exist only in developed wealthy countries. CanRisk, and other innovative breast cancer early diagnostic devices under development, offer the potential for cheap, rapid, reliable and exquisitely accurate diagnosis that can be easily used in primary care settings throughout the world. In time, as authority in medicine passes to algorithms, expect these new and innovative devices to replace mammography screening in wealthy countries and quickly become devices of choice in developing economies and significantly dent the vast and rapidly growing global burden of breast cancer.
view in full page
  • AI, biometrics, and wearables are redefining sleep monitoring and optimisation
  • Medical devices and consumer wearables are merging, reshaping MedTech
  • This Commentary provides insights into the booming sleep tech sector and its leading players
  • Traditional MedTech must evolve or risk falling behind in this fast-moving space
 
While You Were Sleeping
 
In the boardrooms and R&D labs of traditional MedTech companies, where discussions have long centred around legacy devices designed for hospital-based interventions, a transformation has been quietly taking place. While industry veterans - often digital immigrants - remained entrenched in familiar paradigms, focusing on incremental improvements to existing technologies, a new frontier of health innovation was unfolding beyond their traditional domain. The sleep technology market, once a niche sector, has surged forward, fuelled by cutting-edge wearables, sophisticated biometrics, and AI-driven data analytics.

This shift has been driven by a fundamental rethinking of health itself: sleep, once an afterthought in mainstream medical discourse, is now recognised as a cornerstone of physical and mental wellbeing. As research continues to highlight its critical role in metabolic regulation, cognitive function, emotional stability, and chronic disease prevention, consumer demand for sleep-enhancing solutions has skyrocketed. Meanwhile, a new breed of MedTech innovators - unburdened by legacy constraints - has seized this opportunity, developing advanced sleep monitoring and optimisation tools that bridge the gap between consumer wellness and clinical-grade diagnostics. In doing so, they have redefined the boundaries of MedTech, leaving many traditional players scrambling to catch up. While they were sleeping, the future of health technology evolved - without them.
 
In this Commentary

This Commentary delves into the rapid rise of the sleep MedTech market, a sector that has transitioned from a niche industry to a driving force in health innovation. It explores how advancements in AI, biometrics, and wearable technology have redefined sleep monitoring, blurring the lines between consumer wellness and clinical diagnostics. Highlighting key industry players, emerging market trends, and the evolving role of MedTech, the Commentary emphasises the need for traditional firms to adapt - or risk being left behind.
 
The Critical Role of Sleep in Health

Once regarded as a passive state of rest, sleep is now widely recognised as a critical pillar of health, as essential as diet and physical activity. It is no longer seen as a by-product of modern life but rather as a fundamental biological process that influences overall wellbeing. The timing, duration, and quality of sleep shape a wide range of health outcomes, from cognitive function to chronic disease prevention. Sleep plays a crucial role in metabolic regulation, helping to maintain hormonal balance, regulate appetite, and support glucose metabolism, thereby influencing conditions such as obesity and diabetes. It is equally important for emotional stability, as insufficient sleep is linked to heightened stress, anxiety, and mood disorders. Beyond its psychological effects, sleep is essential for cognitive performance, memory consolidation, and learning, enhancing problem-solving abilities and decision-making processes. Neurologically, it serves as the body’s natural maintenance system, facilitating the removal of metabolic waste from the brain and playing a potential role in neurodegenerative disease prevention.

Despite mounting scientific evidence highlighting the health implications of sleep, mainstream medical practice and public health strategies have been slow to give it the attention it deserves. MedTech leaders, preoccupied with acute interventions and reactive care models, have historically overlooked sleep as a key determinant of health. This neglect has created an opportunity that innovative companies have seized, leveraging technology to quantify, analyse, and optimise sleep. In doing so, they have not only addressed a long-ignored health imperative but also reshaped the landscape of MedTech itself.
 
The Rise of the Sleep Tech Market

The global sleep technology market has undergone a transformation, evolving from a niche category into one of the fastest-growing segments in health technology. Valued at ~$23bn in 2025, it is projected to surge to ~$69bn by 2032, expanding at a compound annual growth rate (CAGR) of ~17%. Such rapid growth reflects a shift in how sleep is perceived - not as a passive biological function, but as a significant determinant of long-term health and performance.

Several factors have fuelled this expansion. Heightened public awareness of sleep’s role in overall health has driven a demand for tools that monitor and enhance sleep quality. As consumers become more proactive about their wellbeing, they are increasingly seeking solutions that go beyond traditional sleep aids, favouring advanced, technology-driven approaches. The proliferation of wearable technology has further accelerated this trend, with devices such as smart rings, wristbands, and smart beds offering real-time data on sleep cycles, heart rate variability, and nocturnal movement. The integration of AI and machine learning has added another dimension, enabling personalised, data-driven insights that allow users to fine-tune their sleep patterns. Together, these forces are reshaping the MedTech landscape, establishing sleep technology as an essential and lucrative frontier - one that traditional MedTech leaders can no longer afford to ignore.
 
Pioneering Companies in Sleep Technology

The landscape of sleep technology is rapidly evolving, driven by companies that blend science with user-centric innovation. These pioneers are reshaping how people understand, monitor, and optimise their sleep, leveraging advancements in AI, biometrics, and neurotechnology. Here are a few examples:

Oura Health: Founded in 2013 in Finland, Oura Health has established itself as a leader in wearable sleep tracking through its flagship product, the Oura Ring. This sensor-packed smart ring provides continuous monitoring of sleep stages, heart rate variability, temperature fluctuations, and overall recovery metrics. With >2.5m units sold worldwide, Oura has built a loyal customer base, with the US as its largest market followed by the UK. The company continues to refine its algorithms, integrating personalised insights and readiness scores to help users optimise their rest and recovery.

Eight Sleep: Positioning itself at the intersection of sleep and fitness, Eight Sleep has transformed the mattress industry with its Pod technology. This intelligent sleep system adjusts temperature throughout the night, catering to individual preferences and responding to environmental changes. With the launch of its fourth-generation Pod in 2024, Eight Sleep has expanded into new global markets, including the United Arab Emirates, underscoring the growing demand for data-driven sleep optimisation.

ResMed: A dominant force in sleep apnoea treatment, ResMed has embraced the rise of wearable and smart technology to enhance sleep disorder management. The company’s success is reflected in its 10% revenue growth to ~$1.3bn in 2024, partly fuelled by the increased awareness of sleep health driven by integrations with smart phones, such as those of Apple and Samsung and other consumer tech giants. By leveraging cloud-based connectivity and AI-driven diagnostics, ResMed is making strides in improving access to personalised sleep therapy.

Fullpower Technologies: A pioneer in AI-powered sleep tracking, Fullpower Technologies specialises in cloud-based IoT and wearable solutions designed to analyse sleep patterns and provide personalised recommendations. Their Sleeptracker® platform, licensed to various bedding and consumer electronics manufacturers, enables non-wearable sleep monitoring, catering to users who prefer an unobtrusive approach to sleep tracking.

Elemind: Bringing neurotechnology into the sleep space, Elemind is developing wearables that use auditory and electrical brain stimulation to modulate neural activity. Their goal is to accelerate sleep onset, enhance sleep depth, and improve overall sleep efficiency. By integrating neuroscience with smart technology, Elemind represents the next frontier in sleep enhancement, offering solutions that go beyond passive tracking to actively influence sleep outcomes.

As the global focus on sleep health continues to grow, these pioneering companies are driving innovations that empower individuals to optimise their rest, improve cognitive function, and enhance overall wellbeing.
 
Blurring the Lines: Medical Devices and Consumer Wearables

The distinction between medical devices and consumer wearables is becoming increasingly fluid, as consumer technology integrates medical-grade capabilities and clinical devices adopt user-friendly designs. Wearables that once focused on fitness tracking now provide FDA-cleared health insights, while traditionally complex medical devices are evolving into intuitive, everyday tools. This convergence is fuelled by several factors.

First, cost reduction has made advanced health monitoring more accessible, thanks to improvements in sensor accuracy, miniaturisation, and processing power. What was once confined to hospitals - such as continuous glucose monitoring or ECG tracking - is now available in a sleek, wrist- or finger-worn format. Second, rising consumer health literacy has driven demand for self-monitoring tools, with individuals proactively managing their sleep, heart health, and stress levels through smart devices. Finally, the increasing prevalence of chronic diseases, such as diabetes and hypertension, has accelerated the need for at-home monitoring solutions that reduce healthcare burdens and empower patients.

For traditional MedTech companies, this shift presents both challenges and opportunities. Competing with agile tech firms requires a more consumer-centric approach, balancing clinical rigour with user experience. Those willing to innovate beyond conventional models - integrating AI, cloud connectivity, and personalised insights - will be well-positioned to lead the next evolution of digital health.
Episode #4 of HealthPadTalks is now available!

Click here to listen to MedTech CEOs: Leading the Future of Innovation
Regional Dynamics in the Sleep Tech Market

The global sleep technology market is expanding at different rates across regions, shaped by factors such as healthcare infrastructure, consumer awareness, and economic development. While North America continues to dominate, other regions are emerging as key players, driven by rising health consciousness and technological adoption.

North America leads the sleep aids market, with a valuation of ~$2.3bn and growing at a CAGR of ~3.5%. This dominance is fuelled by a high prevalence of sleep disorders, such as sleep apnoea and insomnia, along with strong consumer demand for advanced sleep solutions. The region’s well-established healthcare system and widespread use of wearable technology have further accelerated adoption. Additionally, partnerships between sleep tech companies and research institutions have led to continuous innovation in sleep tracking and treatment devices.

The European sleep aid market is valued at ~$1.8bn with a growth rate of ~4%. This is driven by increasing health consciousness and the expanding use of wearable and non-wearable sleep tracking devices. Countries like Germany, the UK, and France are at the forefront, with consumers embracing smart sleep solutions to enhance wellness and productivity. The region’s regulatory environment also encourages the development of clinically validated sleep tech products, further boosting market confidence.

Meanwhile, the Asia-Pacific (APAC) region, particularly India, presents significant growth potential. In 2025, the APAC market is ~$14bn, growing at a CAGR of ~7% and expected to reach ~$25bn by 2033. Factors such as urbanisation, rising disposable incomes, and greater awareness of sleep health are driving demand for both consumer sleep tech and medical-grade solutions. With its vast population (>1.4bn) and increasing smartphone penetration, India is poised to become one of the largest emerging markets for sleep technology, offering significant opportunities for global and local companies alike.
 
Awakening to New Opportunities

The rapid evolution of the sleep aid MedTech market is a wake-up call for traditional medical technology leaders. As consumer expectations shift and digital health becomes mainstream, companies must adapt, innovate, and expand to remain competitive. The sleep technology sector is no longer just about treating disorders - it is about enhancing overall wellbeing through preventative, personalised, and data-driven solutions.

To thrive in this landscape, traditional MedTech firms must prioritise continuous innovation, investing in R&D to create intuitive, clinically validated, and user-friendly products. As consumer sleep tech advances - from wearable rings to smart mattresses - medical-grade solutions must also become more accessible and engaging, bridging the gap between healthcare and everyday life.

Data integration is another critical factor. Leveraging AI and machine learning, companies can transform raw sleep data into actionable insights, offering personalised recommendations for better rest and long-term health improvements. Seamless connectivity with smartphones, wearables, and Internet of Things (IoT) - enabled sleep devices will be key in delivering a holistic approach to sleep care.

Expanding into emerging markets is also important. Regions like Asia-Pacific and Latin America present opportunities due to rising health awareness and increasing adoption of digital health solutions. Adapting strategies to local needs, regulatory environments, and economic conditions will be necessary for success.

Finally, fostering collaborations with tech firms, start-ups, and research institutions will drive innovation. Strategic partnerships can help MedTech companies stay ahead of the curve, integrating innovative technology while maintaining the clinical rigour necessary for regulatory approval.
 
Takeaways
 
While traditional MedTech companies have tended to remain anchored to legacy devices and slow growing markets, the sleep technology sector has surged, reshaping the definition of sleep health. No longer confined to sleep disorder treatment, this space now intersects with wearable innovation, AI-driven insights, and personalised wellness solutions - and consumers are embracing it at an unprecedented pace.

This is not just about catching up; it is about redefining the industry’s role in a rapidly evolving digital health ecosystem. Companies that integrate advanced data analytics, seamless consumer experiences, and cutting-edge sleep science will be the ones to shape the future of global wellbeing.
view in full page
  • AI, robotics, and digital health are redefining diagnostics, treatments, and patient care - providers must adapt or risk being left behind
  • MedTech is shifting from products to platforms, requiring a fundamental rethink of business models
  • Regulatory, cybersecurity, and data challenges demand agility and proactive adaptation
  • Start-ups and big tech are disrupting the industry, pushing traditional players to innovate
  • Success requires digital transformation, collaboration, and bold action - the future belongs to those who lead
 
MedTech’s Crossroad: The Big Pivot

The medical technology industry is at a defining moment, undergoing a transformation more profound than ever before. For at least a decade, AI, digital health platforms, and robotics have been reshaping patient care - shifting MedTech from a product-driven sector to an interconnected, platform-based ecosystem. Traditional business models are being dismantled as regulatory requirements tighten, patient expectations rise, and competition from tech giants and agile start-ups accelerates disruption. AI-driven diagnostics, wearable health monitors, and real-world data analytics are steering healthcare toward a future where personalised medicine and predictive analytics replace one-size-fits-all solutions. Given the pace and scale of this shift, how many MedTech boards have assessed what it means for their long-term strategy?

The question is no longer whether the industry will change - it is how quickly companies can adapt to survive and thrive.

For traditional enterprises struggling to keep pace, the need for transformation is undeniable. Yet, when constrained by financial pressures, regulatory complexities, and limited resources, meaningful change can seem unattainable. Years of short-term, survival-driven decisions - while often necessary - have eroded long-term strategic vision and adaptability. However, clinging to a reactive stance does not just risk stagnation - it accelerates obsolescence. As industries evolve, disruptive competitors gain ground, and consumer expectations continue to shift, organisations that fail to recalibrate risk not only being outpaced but relegated to the side-lines.


Even when resources are constrained, industry leaders must shift from a reactive mindset to one that prioritises long-term strategic direction. Success depends on a disciplined, well-structured plan - guided by expert insights and anchored in clear milestones and measurable outcomes that align the entire organisation.

The reality is undeniable: every MedTech company, regardless of size and performance, is operating in an environment of rapid and significant technological disruption. Those that take bold, deliberate steps toward reinvention will position themselves for sustained growth, increased value, and long-term competitiveness. Those that delay may find the opportunity to adapt slipping away.
In this Commentary

The MedTech industry is transforming, driven by AI, digital health, and patient-centric care. This Commentary suggests a significant strategic pivot - not a quick fix, but a four-to-five-year transformation. It explores how disruption, regulation, and market shifts are reshaping competition and challenges leaders to rethink traditional business models. With a structured roadmap for sustained growth, the message is clear: those who adapt will lead; those who resist risk obsolescence.
 
Disruptive Innovation: A New Era for MedTech

The rapid convergence of AI, machine learning (ML), and predictive analytics is not just enhancing healthcare - it is reshaping how diseases are diagnosed, treated, and managed. AI-powered imaging systems now match or even surpass human radiologists in detecting anomalies, enabling earlier diagnoses and improved patient outcomes. Meanwhile, ML is accelerating drug discovery, reducing research timelines, and paving the way for hyper-personalised treatments tailored to individual genetic profiles.

Beyond AI, wearable technology and remote monitoring are radically changing patient engagement. Continuous glucose monitors, smart rings with electrocardiography (ECG) capabilities, and AI-driven predictive analytics are empowering individuals to take a more proactive role in managing chronic conditions. This shift - from reactive treatment to preventive, patient-centred care - is not only transforming healthcare delivery but also reducing hospital visits and lowering overall costs.

In surgical settings, robotics and augmented reality are enhancing precision, minimising human error, and improving recovery times. Companies like Intuitive Surgical and Medtronic are pioneering robotic-assisted procedures, while AI-driven automation is streamlining care pathways, improving efficiency, and alleviating operational burdens.

Yet, as the industry moves toward an interconnected, data-driven ecosystem, many MedTech companies - once trailblazers - find themselves at a crossroads. The sector’s evolution demands new capabilities, yet many established players remain structured around traditional product-driven models. While they continue to deliver medical devices, their ability to fully leverage emerging technologies within an evolving, platform-based healthcare landscape is often constrained by legacy business models, regulatory complexities, and internal inertia.

Disruption in MedTech is not always an abrupt event but an ongoing shift that requires strategic foresight, adaptability, and a willingness to embrace continuous transformation. This transition toward a more integrated, technology-driven ecosystem presents both a challenge and an opportunity: those who actively invest in new capabilities, partnerships, and scalable digital solutions will be positioned to deliver value for both shareholders and patients. However, companies that rely too heavily on past successes without evolving risk gradual erosion of their market position in an industry where progress is constant, and competitive pressures are intensifying.
Episode #5 of HealthPadTalks is now available!

Click here to listen to Rewiring Neurosurgery: The 2040 Frontier
From Devices to Platforms

The MedTech industry is moving beyond traditional hardware-driven business models toward integrated, service-based ecosystems. Historically, companies focused on selling standalone medical devices, but the future belongs to platforms that leverage software, connectivity, and real-time data to drive continuous value. This shift reflects a broader trend in healthcare: the move from episodic, reactive treatment to proactive, continuous management of patient health and wellbeing.

A key driver of this transformation is the integration of MedTech with telehealth and virtual care. The COVID-19 pandemic accelerated the adoption of remote healthcare, forcing regulatory bodies, payers, and providers to embrace digital-first models. Connected medical devices - ranging from remote monitoring tools to AI-powered diagnostic platforms - now enable clinicians to deliver high-quality care beyond hospital walls, reducing the burden on overstretched healthcare systems.

However, this evolution is not without challenges. Cloud computing and interoperability remain hurdles, as fragmented data systems hinder communications between devices, electronic health records (EHRs), and healthcare providers. Standardising data exchange and ensuring cybersecurity is critical to unlocking the potential of digital health.

At the forefront of this change is the rise of digital therapeutics and Software as a Medical Device (SaMD). These AI-driven applications, approved by regulators, are redefining treatment paradigms by offering evidence-based interventions for conditions ranging from diabetes to mental health disorders. The companies that successfully transition from product manufacturers to digital health platform leaders will help define the future of MedTech.

 
Regulatory & Compliance Landscape: Adapting to Change

The MedTech industry operates in one of the most regulated environments, and as innovation accelerates, regulatory frameworks worldwide struggle to keep pace. Companies must navigate a complex and evolving landscape, balancing speed to market with stringent compliance requirements. In the US, the Food and Drug Administration (FDA) has introduced more flexible pathways for digital health solutions, AI-driven diagnostics, and SaMD, but scrutiny over safety, efficacy, and real-world performance remains high. Meanwhile, the European Union Medical Device Regulation (EU MDR) has raised the bar for clinical evidence, risk assessment, and post-market surveillance, posing compliance challenges for manufacturers. In China, an expanding regulatory framework seeks to align with international standards while maintaining strict control over data security and intellectual property.

One of the most transformative regulatory shifts is the growing emphasis on real-world evidence. Regulators are increasingly requiring post-market surveillance data to assess device performance beyond clinical trials. This shift compels companies to integrate real-time monitoring, AI-powered analytics, and patient-reported outcomes into their regulatory strategies.

At the same time, the rise of connected healthcare systems has introduced new risks, particularly in cybersecurity and data privacy. With medical devices and digital health platforms generating vast amounts of sensitive patient data, companies must ensure compliance with data protection regulations such as the US Health Insurance Portability and Accountability Act of 1996 (HIPAA), the EU’s General Data Protection Regulation (GDPR), and China’s Personal Information Protection Law (PIPL). Further, cyber threats pose not only financial and reputational risks but also patient safety concerns, making robust cybersecurity measures an imperative rather than an afterthought.

For MedTech leaders, regulatory agility is no longer optional - it is a competitive advantage. Companies that proactively engage with regulators, leverage real-world data, and prioritise cybersecurity will navigate compliance complexities more effectively, positioning themselves as trusted innovators in a rapidly evolving market.

 
AI, Ethics, and the Future of Decision-Making in MedTech

As AI becomes increasingly embedded in MedTech, a critical challenge emerges how to balance automation with human oversight in medical decision-making. AI-driven diagnostics, robotic-assisted surgeries, and predictive analytics promise greater efficiency, accuracy, and personalisation of care. However, the inherent limitations of AI - such as the risk of false positives or negatives, lack of contextual understanding, and vulnerability to biases - highlight the necessity of keeping (human) clinicians in the loop. The future of MedTech will not be about replacing doctors but augmenting their expertise with AI-driven insights.

One of the most pressing ethical concerns is algorithmic bias. AI models are only as good as the data they are trained on, and historical healthcare datasets often reflect systemic disparities in access and treatment. If left unchecked, biased algorithms could exacerbate healthcare inequalities by delivering inaccurate diagnoses or suboptimal treatment recommendations for underrepresented populations. MedTech companies must invest in diverse, representative datasets and establish mechanisms for continuous bias auditing to ensure AI supports equitable healthcare for all.

Another ethical challenge is patient data privacy. AI-powered diagnostics and predictive tools require vast amounts of sensitive health data, raising concerns about consent, ownership, and security. As AI systems become more autonomous, MedTech companies must prioritise transparency in data usage, ensure compliance with global privacy regulations (HIPAA, GDPR, PIPL), and build trust with patients and healthcare providers alike.

The future of AI in MedTech hinges not only on technological advancements but also on ethical stewardship. Companies that proactively address these challenges - by implementing robust governance frameworks, fostering transparency, and embedding fairness into their AI models - will lead the industry into a future where innovation and ethical responsibility go hand in hand.

 
Market Dynamics: The Competitive Landscape and Investment Trends

The MedTech industry is experiencing a wave of consolidation, partnerships, and new market entrants as companies race to secure competitive advantages in a rapidly evolving landscape. Mergers and acquisitions (M&A) are reshaping the industry, with traditional MedTech giants acquiring AI-driven start-ups and digital health companies to expand their capabilities beyond hardware into data-driven solutions. At the same time, strategic partnerships with pharmaceutical firms, hospitals, and giant tech companies - such as Google, Amazon, and Apple - are redefining healthcare delivery. Big tech’s entry into MedTech is disruptive, as these firms leverage their vast data ecosystems, AI expertise, and consumer reach to challenge incumbents.

Meanwhile, venture capital (VC) funding is fuelling a new wave of innovation, with start-ups developing AI-powered diagnostics, robotic surgical systems, and digital therapeutics. The influx of investment has democratised innovation, allowing agile, data-driven companies to compete with legacy MedTech firms. However, the shift from product-based to platform-based business models presents scalability challenges, as start-ups must navigate complex regulatory environments while proving clinical efficacy and economic value.

Beyond established markets, emerging economies offer significant growth opportunities. Rapidly expanding healthcare infrastructure, increasing demand for affordable medical technology, and government-driven digital health initiatives make regions such as Asia, Latin America, and Africa attractive for investment. However, navigating regulatory complexities, supply chain constraints, and pricing pressures will require localised strategies and innovative business models.

To thrive in this increasingly dynamic environment, MedTech leaders must think strategically, embrace collaboration, remain agile in their investment strategies, and leverage both organic growth and acquisitions to stay ahead of the competition. The companies that successfully integrate AI, digital health, and global expansion strategies will define the next era of MedTech leadership.
 
The Patient-Centric Future: Reimagining Healthcare Delivery

The future of healthcare is shifting away from traditional hospital-centred models toward a decentralised, patient-driven approach. MedTech companies are at the forefront of this transformation, leveraging digital tools, remote monitoring, and AI-powered analytics to bring care closer to the patient. Advances in telehealth, wearable technology, and home-based diagnostics are enabling continuous, real-time health monitoring, reducing the need for in-person visits, and improving long-term outcomes for patients with chronic conditions. This shift not only alleviates pressure on overstretched healthcare systems but also enhances accessibility for patients in rural or underserved regions.

Consumer-driven healthcare is another defining trend, as patients demand greater control over their health data and treatment decisions. Digital health apps, AI-driven symptom checkers, and wearable sensors are empowering individuals to proactively manage their wellbeing, moving healthcare from a reactive to a preventive model. With personalised insights and real-time feedback, patients are no longer passive recipients of care but active participants in their health journeys.

Predictive analytics play a crucial role in this transformation. AI-driven models can identify early disease markers, assess risk factors, and provide personalised preventive recommendations. By leveraging vast datasets from wearable devices, genetic testing, and electronic health records, predictive medicine can help prevent hospitalisations, reduce healthcare costs, and ultimately improve population health.

For MedTech companies, the challenge - and opportunity - lies in building integrated, patient-centric solutions that are both technologically advanced and user-friendly. However, despite these changes in technology, market dynamics, and patient expectations, many traditional boards may not yet be fully engaging with the strategic implications of this transformation. As healthcare moves from standalone devices to interconnected digital ecosystems, the need for forward-looking governance becomes ever more critical. Ensuring that these paradigm shifts are not just acknowledged but actively incorporated into long-term strategies will be essential for MedTech companies to remain competitive and patient-focused.

 
Staying Ahead in MedTech: A Strategic Roadmap for Resilience and Innovation

In an era where AI, digital health, and data-driven medicine are redefining MedTech, staying competitive requires more than just keeping pace - it demands a recalibration of strategy. For companies facing resource constraints, operational pressures, or even firefighting immediate challenges, the path forward may seem daunting. However, securing long-term relevance does not have to come at the expense of addressing pressing issues.

MedTech leaders can drive impact by implementing targeted, high-value digital transformations that deliver both quick wins and strategic advantages. AI-powered diagnostics, predictive analytics, and automation are no longer distant innovations but immediate enablers of efficiency, cost reduction, and improved patient outcomes. Even incremental adoption - such as deploying AI in operational workflows, leveraging cloud-based data management, or automating compliance processes - can yield measurable benefits without overextending resources.

Equally critical is regulatory agility. With evolving global frameworks such as the FDA’s AI-driven SaMD guidance and the EU MDR, companies cannot afford regulatory lag. Embedding regulatory intelligence into R&D and product development - through modular, software-driven solutions that evolve with real-world data - ensures market readiness without unnecessary delays.

For businesses struggling to plan beyond the immediate horizon, futureproofing does not require an all-or-nothing approach. Instead, a phased strategy - where short-term efficiencies build the foundation for long-term competitiveness - allows underperforming companies to regain momentum without excessive risk. As emerging trends like personalised medicine, blockchain-enabled health data management, and quantum computing evolve, MedTech leaders must cultivate a pragmatic yet forward-looking mindset, leveraging cross-industry collaborations and strategic partnerships to remain relevant.

Resilience and innovation are not mutually exclusive. To thrive in an increasingly complex landscape, MedTech companies must balance immediate operational fixes with scalable, technology-driven advancements. However, industry leadership requires more than agility - it demands foresight. By strategically planning for the next four to five years, organisations can proactively shape their trajectory, ensuring sustainable growth and a competitive edge. The following high-level roadmap outlines a structured approach for a constrained traditional MedTech to navigate this evolution with clarity and purpose.

 
A 4-5 Year Roadmap for MedTech Evolution

Phase 1: Digital Foundations & Compliance (Year 1-2)
  • Regulatory Readiness: Implement AI-driven compliance monitoring and real-time risk management.
  • Manufacturing Digitalisation: Deploy Internet of Things-enabled smart manufacturing and cloud-based quality control for end-to-end traceability.
  • Operational Efficiency: Automate processes, optimise costs, and leverage blockchain for supply chain integrity.

Phase 2: Transition to Digital & AI-Driven Services (Year 2-3)
  • Portfolio Optimisation: Phase out underperforming hardware and shift R&D toward smart devices and digital therapeutics.
  • AI-Enabled Devices: Modernise legacy products with modular software, embedding real-time monitoring and remote diagnostics.
  • Cultural Shift: Upskill leadership, adopt agile product development, and transition from proprietary models to open-platform collaborations.

Phase 3: AI-Powered Growth & Platform Monetisation (Year 3-5)
  • AI & Predictive Innovation: Develop digital biomarkers, smart surgical systems, and AI-driven disease progression models.
  • Platform Expansion: Establish a mobility as a service (MaaS) model, integrating AI, software, and predictive analytics.
  • Investor & Market Positioning: Shift perception from manufacturing to digital health leadership, leveraging strategic acquisitions and partnerships.

Key Milestones
  • Year 1: Regulatory compliance secured - AI-driven automation initiated.
  • Year 2: Cost optimisation achieved - first smart-enabled devices launched.
  • Year 3: AI-driven R&D operational - digital platform architecture in place.
  • Year 4-5: Full platform monetisation - AI-driven revenue streams, established leadership in MedTech digital transformation.

Takeaways

The MedTech industry stands at a defining inflection point. The convergence of AI, digital health, and personalised medicine is not a distant vision - it is unfolding now. Companies that fail to adapt will not just fall behind; they will likely perish. Traditional, hardware-focused business models are giving way to data-driven, service-oriented ecosystems. Regulatory landscapes are evolving, competition is intensifying, and patient expectations are higher than ever. The question is no longer whether to embrace change, but how strategically and sustainably leaders can pivot.

Winning in this new era will require more than bold rhetoric or short-term adjustments - it demands a carefully planned and executed strategic pivot spanning four to five years. MedTech leaders must resist the urge for reactive, incremental fixes and instead commit to a disciplined transformation. This means embedding long-term thinking into every aspect of operations, investing in digital capabilities, AI integration, and patient-centric solutions, and ensuring that regulatory hurdles and interoperability challenges are leveraged as competitive advantages rather than barriers.

No company can navigate this transformation in isolation. Collaboration is no longer optional - it is a strategic necessity. Leaders must forge alliances with regulators, healthcare providers, research institutions, start-ups, and technology firms to co-create the future of healthcare.

The time for short-termism is over. The MedTech companies that embrace disruption, commit to a structured, multi-year transformation, and redefine their role in the healthcare ecosystem will lead the next era of patient care. Those who hesitate will be left watching from the side-lines as the industry reshapes itself without them. The choice is clear.
view in full page
  • The traditional strategy of the medical devices industry has been to maximise the experience of the surgeon
  • This has resulted in paying little attention to the demands of patients
  • Surgeon populations are shrinking while the general population is growing, aging, becoming ill and demanding care
  • This creates care gaps, which are challenging to reconcile, prolong unnecessary suffering and cause unnecessary deaths
  • Reconciling the shrinking supply of health professionals with the increasing healthcare demands has given more weight to patient demands
  • MedTechs will be obliged to recalibrate their approach to patients principally because regulators are involving them in the approval process of medical devices
  • Patient centric digital therapeutic solutions help to reduce care gaps
  • However, developing such digital therapeutics and involving patients will not come easy to traditional MedTechs because of their lack of capabilities and organizational culture
  • Notwithstanding, to be relevant in the future, MedTechs will need to continue to improve their ties with surgeons while increasing their focus on the large and rapidly growing patient demands
 
Should MedTechs follow surgeons or patients?
 
 
Traditional MedTech business models are overwhelmingly focussed on manufacturing physical devices for surgeons to use in episodic, hospital-based, interventions. Over decades, a symbiotic relationship between surgeons and medical device manufactures has been established and led to significant commercial success for both parties. This has meant that MedTechs have not paid the attention they should have to the growing demands of patients, which include primary prevention and screening through diagnosis and staging to treatment, rehabilitation, and the subsequent management of a condition. Should medical device companies double-down on their business models to follow surgeons, or should they change approach and follow patients?
 
In this Commentary

This Commentary has 2 sections: (i) Follow surgeons, and (ii) Follow patients. Section1 suggests that medical device companies will need to continue their mutually beneficial relationships with physicians but tighten their governance ties. Further, leaders might consider some aspects of surgeon populations, which could impact their business model. These include: (i) the increasing shortages and aging of surgical populations, (ii) burnout among surgeons that prompts early retirement, and (iii) the prevalence of unnecessary surgeries. Section 2 considers the business model of MedTechs following patients and suggests that this is likely to become more relevant in the future as regulators are encouraging patient participation in the approval process for medical devices. Further, patient demands are supported by advancing technologies and smart platforms such as PatientsLikeMe. Patient centric solutions tend to be digital therapeutics, based on software rather than hardware. Solutions that address patient care pathways require scarce digital, data management and artificial intelligence (AI) capabilities, which MedTechs tend not to have. To stand a chance of attracting these, MedTechs will need to develop non-hierarchical, agile working cultures with the capacity to innovate at speed. The significance of business models that improve patients’ care pathways is illustrated by two recent, transformative MedTech deals. Takeaways suggest MedTechs should continue following surgeons, albeit under enhanced governance principles and involve patients in the development of devices and increase their capabilities to provide patient centric digital solutions.
 
 
SECTION 1
Follow surgeons
 
The medical devices industry is “big business”. In 2021, the US devoted ~US$199bn (~5.2%) of annual national health expenditures to medical devices. Over the past four decades mutually beneficial relationships between surgeons and medical device companies have been built, and this forms the basis of a dominant industry business model to “follow surgeons”.
 
Surgeons play a crucial role in the conceptualization, development, and enhancement of medical devices; they influence hospital purchasing decisions, and are compensated for providing these services. Further, they are remunerated for representing MedTechs at conferences, giving speeches on behalf of corporations, and playing a critical role in training physicians to use devices because their efficacy is often associated with a specific use technique that needs to be taught. Further, surgeons may receive research grants from MedTechs and be promoted because of their association with a successful innovation. More recently, with the rise of medical device start-ups, the financial incentives to surgeons have included equity stakes in lieu of cash for various contributions. This means that significant financial ties between medical device companies and surgeons are relatively common, which can be the basis for potential conflicts of interest.
 
MedTechs code of conduct

AdvaMed, a US medical device trade association, based in Washington, DC, is aware of such conflicts and suggests that physicians should be compensated at fair market rates for work they perform. The Association is against equity compensation and says that there should be no link between the commercial success of a medical device and a physician. AdvaMed encourages voluntary, ethical interactions and advises member organizations and physicians to disclose all potential conflicts of interest, which include consulting arrangements, training, support of third-party educational conferences, participation in sales and promotional meetings, gifts, grants, and charitable donations.
 
Despite AdvaMed’s best efforts its suggested code of conduct does not appear to work. A bibliometric analysis of 100 clinicians receiving compensation from 10 large MedTechs and published in the November 2018 edition of JAMA Surgery found that conflicts of interest were not declared in 63% of 225 research projects that resulted in publications. Given the increasing significance of environmental, social, and governance (ESG) criteria among socially conscious investors to screen potential investments, it seems reasonable to suggest that MedTechs might consider regularly disclosing all their financial ties with surgeons and health professionals.
More issues to consider

In addition to the increasing significance of ESG issues, there are some further questions associated with MedTech business models that follow surgeons, which corporate leaders might wish to reflect upon. These include: (i) the surgeon population is aging and shrinking, (ii) surgeons have a higher propensity to burnout than other medical specialities, and (iii) surgeons are responsible for a substantial number of unnecessary operations. Let us describe these in a little more detail.
You might also like: 

A prescription for an AI inspired MedTech industry

Shrinking surgeon populations

Throughout the world, populations of surgeons and health professionals are shrinking. Findings of a 2016 US Department of Health and Human Services report suggest that by 2025, there will be shortages in 9 out of 10 surgical specialties in America, with the greatest reduction in ophthalmology, orthopaedics, urology, and general surgery. Research prepared for the Association of American Medical Colleges (AAMC) by the healthcare consulting firm IHS Markit and published in June 2020, suggests that, by 2032, the US could lack ~23,000 surgeons. Although the US has a higher number of total hospital employees than most countries, nearly half of that workforce is comprised of non-clinical staff who are not directly involved in delivering care. For instance, compared to Italy and Spain, America has fewer practicing physicians per capita: 2.6 per 1,000 inhabitants, compared to 4 in Italy and 3.9 in Spain. According to the World Health Organization (WHO), the global shortage of health workers is projected to reach 13m by 2033.
 
Care gaps

One reason for this projected shrinkage is that a large percentage of surgeons are nearing traditional retirement age. For instance, more than 2 in 5 currently active American doctors will be ≥65 years within the next decade. Further, people are living longer, and a substantial percentage are not staying healthy and need care. According to the US Census Bureau the number of Americans ≥65 is expected to reach ~84m by 2050, which is ~2X the 2012 level of 43m. Among this older population there is a large and growing prevalence of chronic lifetime diseases such as cancer, diabetes, heart conditions, respiratory diseases, and mental illness. In the US there are ~150m people with such conditions and ~40% of these are living with ≥2 chronic diseases. According to the US Centers for Disease Control and Prevention, ~90% of the US$4.1trn annual medical spend (~20% of the country's GDP) is attributable to chronic disorders. Such trends magnify the vast and growing pressure on a shrinking pool of health professionals, and this creates challenging care gaps.
 
Digital therapeutics

Care gaps will not be reduced by medical schools training more physicians and nurses. This takes too long to have an impact on the size of the problem. The UK has attempted to reduce care gaps by importing physicians: ~190,000 of the 1.35m NHS staff in England report a non-British nationality, and ~27% of NHS staff in London report a nationality other than British. This policy raises some ethical issues as most are imported from developing economies with underdeveloped healthcare systems and a scarcity of health professionals. The option to import physicians is not open to the US because its immigration policies make it difficult for international health professionals to work in America. Recently, many advanced industrial economies have sought to reduce their care gaps by developing digital therapeutic solutions for patients, which extend the reach of physicians by overcoming time, place and personal constraints that limit care delivery.
 
Surgeon burnout

Findings of a research study published in the June 2018 edition of the Journal of the American College of Surgeons suggest that the prevalence of burnout among surgeons has increased over time. The research references the 2015 Medscape Physician Lifestyle Report, which argues that burnout among surgeons is on the rise and documents burnout rates among various specialisms ranging ~37% to ~53%, with general surgeons nearing the top of the list at 50%. Research on the impact of the COVID-19 crisis on healthcare professionals published in the December 2021 edition of the Mayo Clinic Proceedings, found that ~1 in 3 US physicians expressed a clear intention to reduce their work hours, and ~1 in 4 intended to leave their practice altogether. Such trends are concerning considering the aging of the US population and the subsequent increased pressure this puts on healthcare systems.
 
Many factors contribute to surgeon burnout. Common causes among American surgeons include long work hours, delayed gratification, challenges with work-home balance, and issues associated with patient care in a changing healthcare ecosystem. According to the WHO’s International Classification of Diseases, (ICD-11) burnout results from “chronic workplace stress that has not been successfully managed”. It is characterised by being emotionally exhausted, feelings of cynicism and loss of empathy and a sense of low personal accomplishment with respect to one’s work. A meta-analysis of the prevalence of burnout published in the March 2019 edition of the International Journal of Environmental Research and Public Health  suggests that surgeons experience elevated rates of depression and psychiatric distress and posits that burnout among junior surgeons is at an epidemic level, which affects patient safety, quality of care and patient satisfaction.
 
Unnecessary surgeries

Another issue for medical device leaders to consider is the incidence rates of unnecessary surgeries. These are any intervention, which is not needed, not indicated, or not in the patient’s best interest when weighed against other available options.  Unnecessary surgeries are not a recent phenomenon: they are a significant reality that continue to expose patients to unjustified surgical risks. In 1976, the American Medical Association (AMA) called for a congressional hearing to address the issue, claiming that each year there are “2.4m unnecessary operations performed on Americans at a cost of US$3.9bn and that 11,900 patients had died from unneeded operations”.  Across the US, the phenomenon is patchy. A cross-sectional study of five US metropolitan areas and published in the January 2022 edition of the Journal of the American Medical Association found significant differences in physician treatment recommendations across a range of specialisms.

You might also like:

If spine surgery fails to relieve low back pain why is it increasing?

Most common unnecessary surgeries

The incidence rates of unnecessary surgeries appear more prevalent in spinal, gynaecological and some orthopaedic procedures. Clinical trials have shown that a significant percentage of spinal fusions for back pain do not lead to improved long-term patient outcomes when compared to non-operative treatment modalities, including physical therapy and core strengthening exercises. Despite these findings, spinal fusion rates continue to increase significantly in the US.
Further, women are at high risk of unnecessary hysterectomies and caesarean sections. Although these rates are moderating, a study for the American College of Obstetricians and Gynecologists, suggested that hysterectomies were improperly recommended in ~70% of cases, even though there were non-surgical alternatives. Hysterectomies can lead to bladder and bowel dysfunction, prolapse, and incontinence,  as well as a 4-fold increased risk of pelvic organ fistula surgery. A study in Health Affairs found that caesarean rates varied significantly (from 2.4% to 36.5%) in hospitals across the US, even among those with low-risk pregnancies.
 
Another study published in Health Affairs suggests that after patients received information on alternatives to joint replacement surgeries, ~26% had fewer hip replacements and ~38% had fewer knee replacements. Each year in the US, >1m total hip and total knee replacement procedures are performed.
 

 
SECTION 2
Follow patients
 
It is not uncommon for MedTech leaders to say that they put “patients first” when developing devices. However, although things are changing, which we describe below, this is more rhetorical that factual. MedTech R&D teams tend to be relatively remote, inwardly focussed, and, particularly in the US, patient voices are generally ignored and not perceived as an integral part of the process.
 
However, the healthcare ecosystem is changing and “following surgeons” cannot constitute an entire strategy for MedTechs. In the future, MedTech business models that follow patients will be driven by patients’ knowledge and their increasing demands to participate in their healthcare decisions, the movement towards personalized care, and regulators’ mandates to incorporate patient perspectives into the development of medical devices and approval processes (see below). Earlier, we suggested that, when surgeons engage with medical device corporations there are competing interests, which often are not disclosed. By contrast, patients are primarily driven by their own safety and wellbeing, which, contrary to surgeons, are grounds for promoting mutual accountability and understanding with healthcare providers.
 
To remain relevant, MedTechs will need to incorporate patient perspectives and patient data into their business models, not least because patients are co-producers of their health and represent a consistent factor, probably the only consistent factor, throughout the care pathway. Further, patients, empowered by digital therapeutics and health information from wearables, hold invaluable personal data, which are often critical to improving care pathways, and outcomes.

 
PatientsLikeMe
 
Patient voices were loud and influential long before MedTechs recognised the significance of engaging patients in development processes. Consider PatientsLikeMea digital platform founded in 2004, with a mission to improve the lives of patients by sharing knowledge, experiences, and outcomes. The company quickly grew to become the world’s largest integrated community, health management, and real-world data platform. Via the site, users can document and share their experiences, track their conditions, and communicate with others living with similar disease states. Data generated by patients who use the site are systemically collected and quantified by the company, while providing users with an environment for peer support and learning. Today, PatientsLikeMe has >0.8bn users representing >2,900 conditions. The company makes money by selling the information patients share in de-identified, aggregated, and individual formats. In 2019, the platform was acquired by the UnitedHealth Group, an American multinational healthcare and insurance company, after former President Trump’s administration forced it to seek a buyer because its majority owner was China-based iCarbonX.
 
Increasing patient input in approval processes for medical devices

What will make MedTechs wake up to the significance of patient perspectives in the development of medical devices are initiatives and demands made by regulators. For the past decade, European regulators through the European Medicine’s Agency (EMA). have solicited patient inputs into their approval process for medical devices. In 2014, the FDA and the EMA created a joint working group to share knowledge and information on patient engagements. In 2007, the Clinical Trials Transformation Initiative (CTTI), a public-private partnership was co-founded by the US Food and Drug Administration (FDA) and Duke University and modelled on the EMA Patients’ and Consumers’ Working Party. CTTI’s mission is to develop and drive patient involvement in the development and approval of devices, which is expected to increase the quality and efficiency of clinical trials. Since its foundation, the CTTI has become a leader in evolving and advancing clinical trials, making them more efficient, and patient focused.
 
In December 2017, a nationwide request in the US was made for patients and patient advocate groups to join the CTTI and become more involved in healthcare product development and in the FDA product reviews. This call came ~1 year after the 21st Century Cures Act became law in December 2016. The Act’s intention is to expedite the process by which new medical devices and drugs are approved by easing the requirements put on companies seeking FDA approval for new products and indications. Under Section 3001 of the Act, the FDA is required to report any patient experience data that were used to support an approval process and to publicly provide aggregate reports on agency use of those data at five-year intervals. This suggests that MedTechs wanting new FDA approvals will need to provide patient-driven data.
 
These initiatives are driven by an ever-improving consumer-controlled social and health data ecosystem, advancements in personal genetic understanding, and increased healthcare cost-sharing. Patient-driven changes are systematically beginning to inject more than token patient participation and viewpoints into all stages of device and drug development.

 
A cultural shift

Improving patient engagement in the development process of medical devices will be challenging for MedTechs that have focussed their business models mainly on manufacturing physical devices and building relationships with surgeons, rather than developing digital assets for patients. The latter requires scarce data management and AI capabilities, which do not thrive in conservative hierarchical organizations. Rather, they require a culture, which promotes innovation at speed and agile ways of working. A recent survey of European executives by The Economist Intelligence Unit, found that poor collaboration between a company’s IT function and its business units slows progress in a firms’ digital objectives. MedTechs that are slow to develop digital capabilities that address patient needs and integrate these into their business models risk not being a party to decisions shaping the emerging healthcare ecosystem.
 
The increasing significance of scarce AI talent

Digital therapeutics predicated upon AI techniques, which are growing in significance with healthcare systems, require large amounts of data collected from electronic health records (EHR), medical images, and information from patients’ wearables. Key areas where AI techniques can improve the delivery of care include: (i) diagnoses, (ii) managing patient journeys, and (iii) improving patient engagement. Streamlining these three areas can ease administrative burdens on healthcare systems, optimize physicians’ time, improve patient outcomes, and lower costs. However, a significant challenge for MedTechs is the scarcity of essential capabilities to develop digital strategies. A 2020 research report by Deloitte Insights suggested that there are significant shortages of “AI developers and engineers, AI researchers, and data scientists”. Corporate leaders might consider bolstering their chances of attracting digital and AI talent by: (i) leveraging their company’s unique value and purpose, (ii) prioritizing and offering best-in-class training over recruiting, (ii) prioritizing diversity, and (iv) engaging with universities.
 
Transformative MedTech deals
 
The significant shift in MedTech strategies towards patients is demonstrated by two recent transformative deals: Teledoc’s 2020 acquisition of Livongo and Siemens Healthineers AG’s 2021 acquisition of Varian Medical Systems Inc. Both combinations emphasise the significance of digitalization and demonstrate the strategic shift towards patients. 
 
The US telehealth giant Teledoc’s acquisition of Livongo for US$18.5bn was the largest digital healthcare deal in history, which valued the combined company at US$38bn. Livongo, founded in 2014, provides digital therapeutic solutions to improve patient health outcomes for a range of chronic conditions including diabetes, and hypertension. The other transformative MedTech digitalization deal was the German health imaging giant Siemens Healthineers AG’s acquisition of cancer device and software specialist Varian in April 2021 for US$16.4bn. Siemens Healthineers is the leading supplier of medical imaging solutions used to support the planning and delivery of radiotherapy. Varian was the leading supplier of radiotherapy solutions. Both deals were substantially larger than Amazon’s US$0.75bn 2019 acquisition of PillPack, and Google’s US$2.1bn 2021 acquisition of Fitbit, and they signal a new and permanent path for MedTech companies towards a digital-first future.
 
Takeaways

To remain relevant MedTechs will need to continue their symbiotic relationships with surgeons albeit in a modified form, while becoming significantly more patient centric and digitally savvy. However, a bigger challenge Western MedTechs will have to face in the next five years is whether they can develop digital therapeutic solutions for patients fast enough to compete with the looming threat from China’s large and rapidly growing capacity to develop and market medical robotics for surgeons and innovative digital therapeutics for patients. This will be the subject of a forthcoming Commentary.
view in full page
  • Since 2000 healthcare has been transformed by genomics, AI, the internet, robotics, and data-driven solutions
  • Traditional providers, anchored in outdated technologies, struggle to keep pace with the evolving healthcare landscape
  • Over the next two decades anticipate another seismic shift, bringing further disruptions to medical technology and healthcare delivery
  • In the face of this imminent transformation, risk-averse leaders may cling to outdated portfolios, showing little interest in adapting to a 2040 healthcare ecosystem
  • Providers must decide; embrace change now and thrive in a transformed healthcare landscape, or stick to the status quo and risk losing value and competitiveness
 
Healthcare 2040
 
Abstract

By 2040, the landscape of healthcare will have undergone a seismic shift, discarding antiquated models in favour of cutting-edge AI-genomic-data-driven approaches that will radically change both medical technology and healthcare delivery. This transformation signifies a departure from the conventional one-size-fits-all system, ushering in an era of targeted therapies grounded in molecular-level insights that challenge entrenched healthcare paradigms. The evolving healthcare narrative emphasises prevention, wellbeing, personalised care, and heightened accessibility. This departure from the norm is not a trend but a significant reconfiguration, where the fusion of biomedical science, technology, and expansive datasets merge to facilitate early detection and proactive interventions. This not only deepens our comprehension of diseases but also elevates the efficacy of therapies. At the core of this transformation is the empowerment of individuals within a framework that champions choice and fosters virtual communities. Genetic advancements, far from just addressing hereditary conditions, play an important role in enhancing diagnostic accuracy, optimising patient outcomes, and fundamentally shifting the focus from reactive diagnosis and treatment to a proactive commitment to prevention and holistic wellbeing. The indispensable roles played by genomics and AI-driven care in reshaping healthcare are not isolated occurrences; they will catalyse the emergence of new data-intensive R&D enterprises, which are poised to redefine the healthcare landscape against a backdrop of multifaceted influencing factors. Successfully navigating this transformative period necessitates a distinct set of capabilities and strategic alignment with an envisioned 2040 healthcare environment.

Providers find themselves at a crossroads, confronted with a choice: adapt and thrive or risk losing value and competitiveness in a rapidly evolving landscape. Recognising potential resistance to change and the scarcity of pertinent capabilities, leaders of traditional enterprises must acknowledge that immediate strategic action is not just beneficial but a prerequisite for success in the redefined healthcare ecosystem of 2040. The urgency of this call to action cannot be overstated, as the window of opportunity for adaptation narrows with each passing moment.

 
In this Commentary

This Commentary aims to help healthcare professionals to strategically reposition their organizations for success in the next two decades. Leaders must evaluate their strengths and weaknesses in the context of an envisioned future and implement strategies to align their organisations with the demands of a rapidly changing health ecosystem. Failure to do so will dent enterprises’ competitiveness and threaten their survival. Leaders should anticipate and address resistance to change among executives with a preference for the status quo. The Commentary has two sections: Part 1, Looking Back 20 Years, describes the scale and pace of change since 2000 and emphasises how genomics, the internet, AI, digitalization, data-driven solutions, robotics, telehealth, outpatient services, personalised care, ubiquitous communications, and strategic responses to demographic shifts have transformed medical technology and healthcare delivery. Part 2, Looking Forward 20 Years, seeks to stimulate discussions about the future of healthcare. While we highlight a range of factors positioned to impact medical technology and healthcare deliver in the future, we emphasise the significance of genomics, varied and vast datasets, and AI. We suggest the emergence of specialised agile, AI-driven research boutiques with capabilities to leverage untapped genomic, personal, and medical data. The proliferation of such entities will oblige traditional healthcare enterprises to reduce their R&D activities and concentrate on manufacturing. Over the next 20 years, anticipate an accelerated shift towards patient-centric, cell-based prevention and wellbeing care modalities, large hospitals replaced with smaller hubs of medical excellence, the rapid growth of outpatient centres, and the acceleration of home care and care-enabled virtual communities. The future dynamic healthcare ecosystem necessitates stakeholders to change immediately if they are to survive and prosper. Takeaways posit a choice for healthcare leaders: either stick to the status quo and risk losing value and competitiveness or embrace change and stay relevant.
 
Part 1
 
Looking Back 20 Years

Reflecting on the past two decades shows the rapid evolution and interplay of factors shaping medical technology and healthcare delivery. Appreciating the speed and scale of change helps to envision the future. Factors such as genomics, the Internet, AI, robotics, digitalisation, data-driven health solutions, telehealth, outpatient services, home care, personalised wellbeing, ubiquitous personal telephony, and strategic responses to demographic shifts have all influenced medical technology and healthcare delivery and will continue to do so in the future. Here we describe a few of these factors.

The completion of the Human Genome Project in 2003 was a pivotal moment in the direction of medical advancement, laying the foundations for the emergence of genomics. Genomics, encapsulating the mapping, sequencing, and analysis of DNA, is a pivotal tool for unravelling molecular information, variations, and their implications in both traits and diseases. This achievement not only transformed biomedical research but also changed healthcare, shifting it from a generic one-size-fits-all approach to finely tuned care tailored to the unique genetic makeup of individuals.

Over the past two decades, the decoding of the human genetic blueprint has provided unprecedented insights into diseases at the molecular level, triggering a paradigm shift in medicine. This ushered in an era of personalised and precision approaches to diagnoses, treatments, and prevention. From the advent of targeted therapies to the implementation of genetic screening, genomic research has had a transformative influence and is positioned to continue its impact on healthcare.

Indeed, genomic testing has become a standard practice, and US Food and Drug Administration (FDA)-approved genomic care modalities have advanced medicine. For example, pharmacogenonics tailors drug treatments to individual patients by utilising genetic information, with FDA-approved tests for specific biomarkers that predict medication responses. Hereditary assessments evaluate an individual's cancer risk based on genetic makeup, such as identifying BRCA gene mutations linked to elevated risks of breast and ovarian cancers. Gene expression profiling analyses a patient's tumour genetics to guide targeted cancer therapies, with FDA-approved companion diagnostic tests for specific cancer treatments. Carrier testing identifies genetic mutations that could be passed on to children, which contribute to family planning and prenatal care. Pharmacodiagnostic tests help pinpoint patients that would benefit from specific drug treatments, predicting responses, especially in cancer therapies.

In 2012, the UK government inaugurated Genomics England, an initiative designed to spearhead the 100,000 Genomes Project, which aimed to sequence the genomes of 100,000 patients with infectious diseases and specific cancers. The project’s goals included the enhancement of our understanding of various genetic factors in diseases, the facilitation of targeted treatments and establishing a framework for the integration of genomics into everyday clinical practice. The successful completion of the project in 2018, provided a basis for genomic medicine and a deeper understanding of the genetic framework influencing health and disease.

In addition to genomic data, since 2000, there has been a significant increase in health-related data, driven by the proliferation of electronic health records (EHRs), developments in information management technologies, initiatives to improve healthcare efficiency, and enhanced communications among stakeholders. The growth in data has, in turn, created opportunities for the utilisation of AI and machine learning (ML) algorithms. Over the last two decades, AI has changed medical technology and healthcare delivery by enhancing diagnostics, personalising treatment plans, streamlining administrative tasks, and facilitating research through efficient data analysis, which has improved patient outcomes, and advanced the field. As of January 2023, the FDA has approved >520 AI and ML algorithms for medical use, which are primarily related to the analysis of medical images and videos. Indeed, the rise of algorithms has transformed healthcare, with many of them focusing on predictions using EHRs that do not require FDA approval.

In addition to EHRs there has been the evolution of wearable technologies like the Apple Watch and Fitbit, which have transformed personal health. Initially focusing on fitness tracking, these devices have expanded to monitor an array of health metrics. Over the years, they have amassed vast amounts of personalised data, ranging from activity levels to heart rate patterns. These data reservoirs are a goldmine for healthcare and wellbeing strategies, enabling individuals, healthcare professionals and providers to gain unprecedented insights into health trends, customised care routines, and the early detection of health issues. This combination of technology and health data has created opportunities for proactive healthcare management and personalised wellbeing interventions.

Targeted medicine not only benefitted from AI but also from personalised telephony, which experienced a significant boost in the early 2000s by the widespread internet access in households across the globe. The period was marked by the introduction of the iPad in 2001, closely followed by the launch of the iPhone. These innovations triggered widespread smartphone use and accessible internet connectivity, laying the foundations for the emergence of telehealth and telemedicine. In the early 2000s, global cell phone subscriptions numbered ~740m. Today, the figure is >8bn, surpassing the world's population. This increase was driven by the proliferation of broadband, the evolution of mobile technologies and the rise of social media, all contributing to the ubiquitous presence of the internet. By the 2010s, the internet had integrated into the daily lives of a substantial portion of the global population. Initially, in 2000, ~7% of the world’s population had access online. Contrastingly, today, >50% enjoy internet connectivity. In a similar vein, broadband access in American homes has surged from ~50% in 2000 to >90% in the present day. Personal telephony has evolved into an omnipresent force, and has become an integral part of billions of lives, actively enhancing health and wellbeing on a global scale. After 2010, patient-centric wellbeing evolved and later was helped by Covid-19 pandemic lockdowns, with telehealth and telemedicine offering remote consultations and treatments, empowering patients, and emphasising shared decision-making between healthcare providers and patients.

On a more prosaic level, consider how robotics has changed surgery over the past two decades by offering enhanced precision, reduced invasiveness, and improved recovery times. The use of robotic systems, like the da Vinci Surgical System, which gained FDA-approval in 2000, has allowed surgeons to perform complex procedures with greater accuracy. Between 2012 and 2022, the percentage of surgical procedures using robotic systems rose from 1.8% to 17%. Robotic surgery is becoming increasingly popular, with an annual growth rate of ~15%. In 2020, its global volume was 1.24m, with the US accounting for >70% of all robotic surgeries.

The shifting demographics over the past few decades, marked by decreasing birth rates, prolonged life expectancy, and immigration, has transformed prosperous industrial economies, resulting in a substantial rise in the proportion of the elderly population. For instance, in the US in 2000, there were ~35m citizens ≥65; today, this figure has risen to ~56m, ~17% of the population. Concurrently, there has been an increase of chronic lifetime illnesses such as heart disease, diabetes, cancer, and respiratory disorders. In 2000, ~125m Americans suffered from at least one chronic condition. Today, this figure has increased to ~133m - ~50% of the population. Simultaneously, there is a shrinking pool of health professionals. Research suggests that by 2030, there will be ~5m fewer physicians than society will require. This, together with ageing populations, the growing burden of chronic diseases and rising costs of healthcare globally are challenging governments, payers, regulators, and providers to innovate and transform medical technology and healthcare delivery.

 
Part 2
 
Looking Forward 20 Years

This section aims to encourage healthcare professionals to envision the future. Over the next two decades, medical technology and healthcare delivery are likely to be affected by numerous interconnected factors, which include: (i) continued progress in AI and ML, internet of things (IoT), robotics, nanotechnology, and biotechnology, (ii) advances in genomics, (iii) increasing availability of multi-modal data (genomics, economic, demographic, clinical and phenotypic) coupled with technology innovations, (iv) accelerated adoption of telemedicine and virtual monitoring technologies, (v) changes in healthcare regulations, (vi) an increase of patient-cantered care and greater patient involvement in decision-making, (vii) emerging infectious diseases, antimicrobial resistance, and other global health issues, (viii) Investments in healthcare infrastructure, both physical and digital, (ix) an evolving and shrinking healthcare workforce, including the further integration of AI technologies and changes in roles, (x) economic conditions and healthcare funding, (xi) the ethical use of technology, privacy concerns, and societal attitudes towards healthcare innovations, and (xii) environmental changes and their impact on health and wellbeing. Such factors and their interconnectivity are expected to drive significant healthcare transformation over the next two decades. Healthcare systems throughout the world are tasked with: (i) improving population health, (ii) enhancing patients’ therapeutic journeys and outcomes, (iii) strengthening caregivers’ experience and (iv) reducing the rising cost of care. There appears to be unanimous agreement among healthcare leaders that these goals will not be achieved by business as usual.
 
In November 2023, BTIG, a leading global financial services firm, organised its Digital Health Forum, bringing together >30 healthcare companies that offer a diverse range of products and services. During the event, executives discussed business models, reimbursement, and commercial strategies, and unanimously agreed that: "The market is primed for the mainstream integration of digital diagnostics and therapeutics."  Here we focus on the anticipated accelerated convergence of genomics and AI technologies, and foresee the emergence of agile, AI-driven R&D boutiques as key players in reshaping medical technology and healthcare delivery.
 
These dynamic research entities thrive on the power of data. Currently, ~79% of the hospital data generated annually goes untapped, and medical information is doubling every 73 days. This emphasises the vast latent potential within these repositories. Traditional enterprises and healthcare professionals, constrained by a dearth of data management capabilities, have struggled to unlock the full potential inherent in these vast stores of information. By contrast, the adept data processing capabilities of these new innovative enterprises position them strategically to harness untapped data sources, extracting valuable insights into disease states and refining treatment modalities. Moreover, they boast advanced technology stacks, seamless connections between semiconductors, software, and systems, and are well-prepared to leverage specialised generative AI applications as they emerge in the market. Armed with cutting-edge technology and extensive datasets, they stand ready to enhance diagnostic precision, streamline treatment approaches, and reduce overall healthcare costs. Private equity firms will be eager to invest in these disruptive AI start-ups, anticipating M&A activities focused on specific therapeutic areas that will make them appealing to public markets.

These innovative entities are set to expedite the introduction of disruptive solutions, improve patients' therapeutic journeys, and optimise outcomes while driving operational efficiencies. Anticipate them to overshadow their traditional counterparts, many of which have outdated legacy offerings and historically have treated R&D as small adjustments to existing portfolios. Given that many conventional healthcare enterprises have: (i) failed to keep pace with technological developments, (ii) a dearth of in-house data-handling capabilities, and (iii) no experience in data-heavy disruptive R&D, it seems reasonable to suggest that they will most likely retreat into their core manufacturing activities, relinquish their R&D roles and lose value.

In the forefront of seismic change, the integration of digitalisation, AI, and cutting-edge decision support tools propels the emerging agile, data-driven R&D enterprises into a pivotal role within the landscape of well-informed, personalised healthcare. Meticulously safeguarding sensitive information, these enterprises not only adhere to the highest standards of privacy but also elevate security measures through state-of-the-art encryption techniques and decentralised storage solutions. As staunch guardians of privacy, they go beyond conventional approaches, crafting data repositories that not only shield confidential information but also facilitate the seamless flow of critical insights crucial for advancing medical technology and elevating care delivery. The seamless synergy between vast genomic, economic, demographic, clinical, and phenotypic data repositories and advanced AI techniques is poised to radically change healthcare R&D, redirecting it away from refining traditional products towards disruptive endeavours. Moreover, these agile research entities are anticipated to encourage widespread industry cooperation, harnessing the power of diverse data sources to innovate health solutions and services that transcend boundaries, thereby playing an important role in shaping a borderless health and wellbeing ecosystem.

In the regulatory arena, a transformation is anticipated by 2040. Regulators are likely to evolve from enforcers to stewards of progress, collaborating with industry stakeholders to promote a consumer-centric healthcare. Advocating transparency, patients' rights, and ethical innovation, regulators will become influential drivers of progress, contributing to a shared and equitable healthcare future. This collaborative effort is expected to contribute to a data-driven healthcare ecosystem that prioritises individual wellbeing, innovation, and accessibility in equal measure.

By 2040, expect healthcare payers to have undergone a transformative change, fuelled by a seismic shift in medical technology and healthcare delivery. New payment models will prioritise individualised therapies and patient outcomes, leveraging real-time health data for customised coverage. AI will streamline administration, reduce costs, and enhance overall healthcare efficiency. Increased patient engagement and collaboration among payers, providers, and patients will drive a holistic, patient-centred approach, ultimately improving the quality and accessibility of healthcare services.


This section has emphasised the transformative forces of genomics and AI shaping a personalised healthcare ecosystem. While traditional medical technology and healthcare delivery may be predicated upon physical devices and a one-size-fits-all approach, the future lies in the fusion of data and smart software to accelerate targeted care, which marks a significant departure from the conventional.
 
Takeaways

The shift towards genomic-driven healthcare marks a transformation in the medical landscape expected by 2040. Moving away from outdated models, the trend towards personalised care, rooted in molecular insights, necessitates a revaluation from health professionals. This shift, facilitated by the fusion of biomedical science, advanced technologies, and vast amounts of varied data, foresees a future where prevention, individualised wellbeing, and improved accessibility become the new norm. The convergence of genomics and AI not only improves diagnostics and treatments but also points to prevention and overall wellness. This Commentary has highlighted the transformative impact of genomics and AI-driven healthcare at the cellular level, making way for data-intensive R&D enterprises that will shape the future of medical technology and healthcare delivery. The path to 2040 demands a departure from conventional norms of the past, requiring strategic realignment and specific capabilities. Traditional providers find themselves at a juncture: those that adapt to an envisioned care environment of 2040 are more likely to succeed, while those that resist risk becoming obsolete. By acknowledging potential obstacles to change and the scarcity of relevant capabilities, leaders are encouraged to recognise the urgency of strategic action as a prerequisite for success in the redefined healthcare landscape of 2040. The future is imminent, and the time for transformative readiness is now.
view in full page
  • Traditional, high-touch sales approaches fail to meet the demands of today’s healthcare systems
  • Value-based care, digital health, AI and increased patient voices are reshaping purchasing priorities and market dynamics
  • Marketing success lies in outcome-based partnerships, AI-driven insights, and integrated digital solutions
  • MedTech leaders must become digitally fluent, foster innovation, and prioritise long-term value

MedTech Market Access for a Digital Era

In the late 20th century, the MedTech industry thrived, powered by a sales-driven approach that prioritised the relationship between sales representatives and healthcare providers. These strategies, built on personal trust and labour-intensive engagement, played a pivotal role in bringing transformative technologies to patients. However, the healthcare landscape of the 21st century is evolving rapidly. The traditional relationship-centric sales model, once a cornerstone of success, is now at odds with the demands of modern healthcare ecosystems.

The rise of value-based healthcare, digital health platforms, and AI-driven personalised therapies has redefined how healthcare is delivered and measured. Providers and healthcare systems are seeking solutions and services that demonstrate tangible clinical and economic value, integrate into digital workflows, and support data-driven decision-making. This shift requires MedTech companies to transcend traditional sales policies and embrace innovative, technology-enabled approaches to market access. Success in this rapidly changing era demands not just products but also partnerships, where digital tools, real-world evidence, and collaborative strategies drive sustainable outcomes. It is time to rethink how MedTech engages with the healthcare sector in a world shaped by data, efficiency, and value.

 
In this Commentary

This Commentary explores the decline of the traditional MedTech sales model, once built on personal relationships and high-touch engagement, in an era dominated by value-based care, digital health, and AI-driven healthcare solutions and services. It highlights the misalignment of traditional strategies with modern healthcare needs and suggests ideas for reimagining market access. By embracing outcome-based partnerships, leveraging AI, and embedding digital services, MedTech companies can position themselves as leaders in the evolving healthcare landscape.
 
The Rise and Resilience of the Traditional MedTech Sales Model

The traditional sales-driven model in MedTech emerged as a natural response to the needs of both the industry and the healthcare ecosystem. Sales representatives were more than transactional intermediaries; they played multifaceted roles as educators, advocates, and trusted advisors. Their expertise bridged the gap between cutting-edge medical technologies and the overburdened physicians tasked with delivering care. Often, these representatives worked directly alongside clinicians, providing support in operating rooms during surgeries, or guiding optimal device use, ensuring that complex products achieved their intended outcomes.

This model thrived during a time when clinicians held significant autonomy in selecting tools and technologies. Purchasing decisions were often personal, based on trust and familiarity, which made relationship-building important. MedTech companies responded by assembling well-trained, specialised salesforces adept at navigating these nuanced dynamics. Firms like Johnson & Johnson, Abbott, and Medtronic solidified their market dominance - the combined 3 companies account for ~16% of the global MedTech market - by cultivating deep customer loyalty through this hands-on approach, reinforcing their reputations as partners in care rather than just vendors.

Even as healthcare evolves, the resilience of this model is evident. Its foundational emphasis on trust, expertise, and collaboration remains a cornerstone, albeit one facing new challenges in an era of value-based care and centralised purchasing decisions.

 
Why Traditional MedTechs Cling to Old Ways

Despite significant changes in healthcare delivery, many MedTech companies remain tethered to this traditional sales model. There are several reasons for this inertia.

1. Cultural Legacy of Sales Dominance
Senior leadership teams in many traditional MedTech firms are frequently comprised of executives who built their careers in sales, fostering a deep-rooted belief that success is driven by high-touch, relationship-oriented selling. This perspective often aligns with the sector’s historical reliance on personal connections to drive growth. Shifting such entrenched mindsets can be a challenge, particularly in organisations with a legacy of success using these approaches. It requires not only cultural transformation but also demonstrating the value of alternative strategies.

2. Misaligned Incentives
Many MedTechs continue to incentivise their commercial teams using metrics focused on short-term sales performance, such as quarterly revenue targets or the volume of devices sold. While effective for driving immediate results, these incentives create a strong disincentive to explore alternative strategies that may better serve long-term objectives. By prioritising near-term gains, companies risk stifling innovation and missing opportunities to align more closely with evolving customer needs, ultimately limiting their potential for sustainable growth.

3. Lack of Digital Fluency at the Top
Traditional MedTech leaders frequently lack the digital fluency needed to fully understand and embrace the transformative potential of tools such as AI, predictive analytics, and digital service layers. This gap in knowhow and experience can encourage scepticism about the value and efficacy of digital-first strategies, often leading to hesitation or underinvestment in these innovations. Without a clear appreciation of how such technologies can drive competitive advantage, organisations risk falling behind in an increasingly tech-driven healthcare landscape.

4. Complexity of Healthcare Systems
Selling to healthcare providers, payers, and integrated delivery systems is more complex than engaging with individual clinicians. These broader stakeholders demand value propositions that go beyond individual product benefits, requiring an understanding of system-wide outcomes, cost-effectiveness, and interoperability. Despite this shift in the healthcare environment, many MedTech companies remain hesitant to move beyond their traditional clinician-focused sales strategies. Such reluctance stems from a preference for familiar approaches and a lack of confidence in navigating system-based selling challenges.

5. Resistance to Risk
The MedTech industry operates within a highly regulated ecosystem, where strict compliance standards and patient safety are paramount. As a result, companies tend to be inherently risk-averse, with leadership often cautious about pursuing change. This hesitation is driven by concerns that innovation or new strategies could inadvertently compromise regulatory compliance, disrupt established customer relationships, or threaten existing revenue streams. While this caution is understandable, it can sometimes hinder the agility needed to adapt to evolving market demands.
 
Why the Traditional Sales Model No Longer Works

The healthcare industry’s transition to value-based healthcare, alongside the rapid rise of digital health solutions, has rendered the traditional sales model increasingly obsolete. Here’s why:
 
1. Shift to Value-Based Care

Under value-based care, healthcare providers are incentivised to deliver superior patient outcomes while controlling costs. This shift moves away from traditional fee-for-service models, where clinicians had discretion to select high-cost devices, toward systems emphasising cost-effectiveness and real world evidence-based results. MedTech companies must adapt by demonstrating their devices provide measurable, impactful value through robust data and clinical evidence, rather than relying on persuasive sales tactics or legacy relationships to drive adoption.
 
2. Consolidation of Decision-Making
 
Purchasing decisions in healthcare have shifted from individual clinicians to procurement committees, group purchasing organisations (GPOs), and hospital executives, who now drive the process. These stakeholders prioritise data-driven evidence that demonstrates both clinical efficacy and economic value, leaving little room for decisions influenced by personal relationships. This transition emphasises the growing significance of robust metrics and compelling outcomes in shaping purchasing strategies and aligning with institutional priorities.
 
3. Digital Health and AI Disruption
 
The rapid proliferation of digital health solutions and services has heightened expectations for seamless integration, real-time data sharing, and personalised user experiences. As a result, legacy MedTech devices that lack advanced digital capabilities are increasingly perceived as outdated and less competitive. This shift is obliging companies to rethink their product strategies and marketing approaches, emphasising innovation, connectivity, and alignment with evolving healthcare ecosystems to remain relevant and meet the demands of modern stakeholders.
 
4. Rising Patient Empowerment

The healthcare landscape is undergoing a transformative shift as patients take an active, informed role in their care decisions, driven by digital tools and unprecedented access to information. As highlighted in Choice Matters by Gordon Moore et al, empowered patients influence health outcomes and reshape healthcare expectations, demanding transparency, personalisation, and value. For MedTech companies, adapting to this paradigm requires prioritising patient-centric strategies, fostering collaboration, and delivering tailored solutions to remain relevant and trusted in an era of heightened patient agency.
 
Reimagining Market Access: Ideas for the Digital-First Era

To thrive in this digital era, MedTech companies must embrace changes to how they market and distribute their products. Here are three strategies for rethinking market access:

Outcome-Based Partnerships
The traditional fee-for-product sales model in MedTech needs to evolve into outcome-based partnerships that align the incentives of MedTech companies with those of healthcare providers. Such partnerships can include innovative risk-sharing agreements where payment is directly linked to the device's performance in delivering measurable clinical outcomes.

For instance, rather than selling a surgical robot outright, a MedTech company might partner with a hospital to deploy the technology while sharing in the cost savings generated by fewer surgical complications and improved patient recovery rates. Similarly, companies specialising in wearable health devices could base their pricing on tangible metrics, such as increased patient adherence to prescribed treatment plans or significant reductions in hospital readmissions, ensuring mutual value creation.

Challenges and Solution
Challenge Establishing robust data and metrics to measure outcomes.
Solution Adapt existing products to generate data and work collaboratively with healthcare providers to define clear, evidence-based performance indicators. Leverage real-world evidence to validate outcomes over time.

Leveraging AI and Predictive Analytics
AI and predictive analytics are poised to transform how MedTech companies demonstrate value to payers and healthcare systems. By leveraging data from clinical trials, real-world usage, and digital health platforms, companies can build predictive models that quantify the long-term clinical and economic benefits of their devices.

For example, a MedTech company specialising in cardiac implants could use predictive analytics to highlight how its products reduce lifetime healthcare costs by reducing hospitalisations and improving patient outcomes. Additionally, AI-driven insights can help tailor value propositions to address the unique priorities of each healthcare provider, such as reducing readmission rates or improving operational efficiency, ultimately strengthening sales strategies, and fostering more meaningful partnerships.

Challenges and Solutions
Challenge Accessing high-quality, longitudinal data.
Solution Partner with healthcare providers, payers, and academic institutions to co-develop data-sharing agreements that ensure mutual benefit.
 
Embedding Digital Service Layers
MedTech companies must shift from a hardware-focused sales approach to delivering integrated solutions that combine devices with advanced digital service layers. These layers might include features like: (i) remote monitoring for continuous patient care, (ii) predictive maintenance alerts to optimise the uptime of surgical equipment, and (iii) AI-powered decision support tools that assist clinicians in making more accurate and timely interventions.

For instance, a company selling glucose monitors could enhance its offering by integrating them with a digital health platform that provides patients with personalised insights and actionable recommendations for managing their diabetes. These digital services not only foster long-term engagement with patients and healthcare providers but also create recurring revenue streams, reinforce brand loyalty, and position MedTech companies as indispensable partners in the care continuum.

Challenges and Solutions
Challenge Developing and maintaining high-quality software capabilities.
Solution Invest in in-house digital talent or pursue strategic acquisitions of digital health start-ups.
 
Case Study

DePuy Synthes, a Johnson & Johnson company and a global leader in orthopaedics, exemplifies how traditional corporations can transform sales strategies to thrive in the 21st century. By leveraging digital tools, data-driven insights, and personalised customer engagement, DePuy Synthes has set a new industry benchmark.

Central to this transformation is the adoption of Salesforce, a powerful customer relationship management platform. By centralising customer data and enabling real-time sales tracking, Salesforce empowers DePuy Synthes to make data-driven decisions and respond swiftly to customer needs. Complementing this, the company has incorporated Virtual Reality and Augmented Reality into its sales processes. These immersive technologies facilitate product demonstrations and surgical simulations, providing healthcare professionals with risk-free, hands-on experiences that build trust and confidence in complex orthopaedic solutions.

DePuy Synthes also employs targeted digital marketing strategies, including content marketing, social media engagement, and personalised email campaigns, to expand its reach and foster brand awareness. Through these channels, the company communicates with both healthcare professionals and patients, driving lead generation in a competitive market.

Data and predictive analytics, plays a role in refining sales strategies. DePuy Synthes leverages analytics to identify market trends, predict customer needs, and tailor offerings to specific segments. Predictive analytics further enhances inventory management and positions the company to seize emerging opportunities.

Remote collaboration tools, such as virtual meetings and webinars, enable DePuy Synthes to engage healthcare professionals globally, sharing product knowledge and maintaining client relationships without geographical constraints. This commitment to accessibility and innovation is emphasised by personalised customer experiences, where tailored recommendations and dedicated support teams foster loyalty and trust.

DePuy Synthes’ transformation underscores the need for MedTech companies to modernise their sales strategies. By embracing digital innovation, data-driven insights, and customer-centric approaches, DePuy Synthes has enhanced efficiency and secured its competitive edge, serving as a model for industry evolution.

 
Call to Action: A New Vision for MedTech Leadership

The transition to a digital-first era demands not only new strategies but also a shift in leadership mindset. MedTech executives must champion digital fluency and cultivate a culture of innovation and experimentation across their organisations. Key steps could include: (i) establishing dedicated innovation teams to pilot transformative market access and value-based care models, (ii) integrating chief digital officers into the executive leadership teams to drive digital transformation, and (iii) aligning incentive structures to prioritise long-term value creation over short-term revenue goals. By embracing these changes, MedTech companies can break free from legacy limitations.
 
Takeaways

The traditional MedTech sales model, while effective in its time, has reached its limits in today’s rapidly evolving healthcare landscape. In an era shaped by value-based care, digital health integration, and AI-driven personalisation, adhering to outdated approaches risks diminishing relevance. The future belongs to companies bold enough to reimagine how their solutions are marketed, adopted, and integrated into the broader healthcare ecosystem.

By shifting to outcome-based partnerships, MedTech firms can align their success with measurable clinical improvements and cost savings for providers. Leveraging AI and predictive analytics empowers companies to demonstrate the long-term value of their products while tailoring offerings to the specific needs of healthcare systems. Embedding digital service layers not only enhances product functionality but also fosters long-term relationships and recurring revenue streams.

This is not the end of MedTech’s growth potential but a pivotal moment to transform. By embracing these changes, companies can redefine their role as essential partners in delivering smarter, more sustainable healthcare.
view in full page