Tag

Tagged: pharmaceutical companies

Sponsored
  • AstraZeneca has turned traditional biopharma R&D on its head and is targeting early stage cancer
  • This strategy benefits from  some of AstraZeneca’s R&D endeavours
  • But the strategy faces strong headwinds, which include significant technological and market challenges and substantial Competition from at least two unicorns
  
AstraZeneca’s strategy to target early cancer

 
Will José Baselga’s gamble pay off?
 
Baselga is AstraZeneca's new cancer research chief who has turned traditional biopharmaceutical drug development on its head by announcing AstraZeneca’s intention to target early- rather than late-stage cancer. “We need to spend our resources on those places where we can cure more people and that’s in early disease”, says Baselga, who knows that early detection can significantly improve patient survival rates and quality of life, as well as substantially reducing the cost and complexity of cancer treatment. Baselga also must know his strategy is high risk. Will it work?
 
In this Commentary
 
In this Commentary we discuss the drivers and headwinds of AstraZeneca’s strategy to increase its R&D focus on early stage cancer. But first we briefly describe cancer, the UK’s situation with regard to the disease and explain why big pharma targets advanced cancers. Also, we provide a brief description of AstraZeneca’s recent history.  
 
What is cancer?

Cancer occurs when a normal cell’s DNA changes and multiplies to form a mass of abnormal cells, which we refer to as a tumour. If not controlled and managed appropriately the tumour can spread and invade other tissues and organs. In the video below Whitfield Growdon, a surgical oncologist at the Massachusetts General Hospital in Boston US, and a Professor at the Harvard University Medical School explains.
 
 
The UK’s record of cancer treatment
 
In the UK cancer survival rates vary between types of the disease, ranging from 98% for testicular cancer to just 1% for pancreatic cancer. Although the UK’s cancer survival rates lag those of other European countries, the nation’s overall cancer survival rate is improving. Several cancers are showing significant increases in five-year survival, including breast (80% to 86%), prostate (82% to 89%), rectum (55% to 63%) and colon (52% to 60%). Many of the most commonly diagnosed cancers in the UK have ten-year survival of 50% or more. With regard to cancer spending, compared with most Western European countries, including France, Denmark, Austria and Ireland, the UK spends less on cancer per person, with Germany spending almost twice as much per head.
 
Why big pharma targets advanced cancers?
 
Most cancers are detected late when symptoms have manifested themselves, which renders treatment less effective and more costly. When cancer is caught early, as in some cases of breast and prostate cancer, tumours tend to be removed surgically or killed by chemoradiation therapy (CRT) and this, for many people, provides a “cure”, although in some cases the cancer returns.
 
Studies in developed economies suggest that treatment costs for early-diagnosed cancer patients are two to four times less expensive than treating those diagnosed with advanced-stage cancer. Notwithstanding, there are physical, psychological, socio-economic and technical challenges to accessing early cancer diagnosis and these conspire to delay cancer detection. Thus, big pharma companies have traditionally aimed their new cancer drugs at patients with advanced forms of the disease. This provides pharma companies access to patients who are willing to try unproven therapies, which significantly helps in their clinical studies. And further, big pharma is advantaged because regulators tend to support medicines that slow tumour growth and prolong life, albeit by a few months.
 
Imfinzi: the only immunotherapy to demonstrate survival at three years
 
A good example of this is AstraZeneca’s immunotherapy drug called Imfinzi (durvalumab) used in unresectable stage-III non-small cell lung cancer (NSCLC), which has not spread outside the chest and has responded to initial chemoradiation therapy. Imfinzi works by binding to and blocking a protein called PD-L1, which acts to disguise cancer cells from your immune system. Imfinzi removes the disguise so that your immune system is better able to find and attack your cancer cells.
 
Findings presented at the June 2019 meeting of the American Society of Clinical Oncology (ASCO), build on a clinical study of Imfinzi reported  in the September 2018 edition of The New England Journal of Medicineand suggest that Imfinzi is the only immunotherapy to demonstrate survival at three years in unresectable stage-III NSCLC. AstraZeneca has begun a phase-3 clinical study of the PD-L1 inhibitor protein in stage II NSCLC patients.
 

 

Some information about AstraZeneca
 
AstraZeneca is a British-Swedish multinational biopharmaceutical company with a market cap of US$107bn and annual revenues of US$22bn. The company operates in over 100 countries, employs more than 61,000, has its headquarters in Cambridge, UK, and is recovering after patents expired on some of its best-selling drugs and a failed takeover bid in 2014 by Pfizer.
You might also be interested in:

A paradigm shift in cancer diagnosis
Patents, legacy drugs and new biologics
 
When pharma companies develop a new drug, they can apply for a patent that stops other companies from making the same thing. A patent lasts for 20 years, after which point other producers can replicate the drug and its selling price plummets. This happened to AstraZeneca’s when the patents expired on two of its best-selling drugs: Crestor (rosuvastatin), and Nexium (esomeprazole). The former is a statin  that slows the production of cholesterol by your body, lowers cholesterol and fats in your blood and is used to reduce your chances of heart disease and strokes. The latter is a drug used to treat symptoms of gastroesophageal reflux disease (GERD) and other conditions involving excessive stomach acid. Unlike some of its rivals, these were oral medicines based on small molecules that are easy for generic manufacturers to copy, which made AstraZeneca vulnerable to cut-price competition immediately after the legal protection of the drugs had expired. Notwithstanding, AstraZeneca’s new generation of biologic medicines, which it launched in the first decade of this century, are protected to some degree by the fact that they are difficult to copy as they are manufactured using cells, instead of big chemistry sets used to make conventional drugs.
 
AstraZeneca’s history with early stage cancer therapies
 
Baselga’s gamble benefits from the fact that AstraZeneca developed an interest in the detection of early stage cancer before his appointment. Today, AstraZeneca is active in clinical studies with other biopharma companies and leading academic institutions targeting earlier-stage therapies.

Working with collaborators over the past two decades, AstraZeneca has tested a number of drugs including Iressa (Gefitinib) and Tagrisso (Osimertinib) in cancers from stage-I onward, in some cases to try to shrink tumours before they are removed surgically. Tagrisso is a potential star-drug for AstraZeneca. It  was originally developed to treat a group of lung cancer patients whose cancer had become resistant to established tyrosine kinase inhibitor therapies such as Iressa  and Roche’s Tarceva (erlotinib). Tagrisso surprised AstraZeneca as it turned out to be better than Iressa and Tarceva when used in untreated patients with epithelial growth factor receptor (EGFR) mutations. EGFR is a protein present on the surface of both normal cells and cancer cells, and are most common in people with lung adenocarcinoma (a form of NSCLC), more common with lung-cancer in  non-smokers, and are more common in women.

 
Epithelial growth factor receptor (EGFR)
 
Think of EGFR as a light switch. When growth factors (in this case tyrosine kinases) attach to EGFR on the outside of the cell, it results in a signal being sent to the nucleus of the cell telling it to grow and divide. In some cancer cells, this protein is overexpressed. The result is analogous to a light switch being left in the "on" position, telling a cell to continue to grow and divide even when it should otherwise stop. In this way, an EGFR mutation is sometimes referred to as an "activating mutation". Tagrisso "targets" this protein and blocks the signals that travel to the inside of the cell and growth of the cell stops. In 2003, when AstraZeneca received regulatory approval of Iressa we had little understanding about EGFR. Today however about 50% of drugs approved for the treatment of lung cancer address this particular molecular profile.

Technological challenges
 
Baselga’s gamble is assisted by advances in  liquid biopsies, which work by detecting fragments of malignant tumour DNA in the bloodstream to identify oncogenic drivers, which help treatment selection. The challenge of this approach is that tumours shed meniscal amounts of circulating tumour DNA (ctDNA), which significantly raises the difficulty of detecting the genetic signals that oncologists need to identify specific cancers and select treatments. ctDNA should not be confused with circulating free DNA (cfDNA), which is a broader term that describes DNA that is freely circulating in the bloodstream but is not necessarily of tumour origin.
 
The good news for Baselga is that in recent years looking for ctDNA has become a viable proposition because of improvements in DNA sequencing technologies, (see below) which make it possible to scan fragments and find those few with alterations that may indicate cancer. While other blood-based biomarkers are being investigated, the advantage of ctDNA is that it has a direct link to a tumour and can be very specific at identifying cancer.  ctDNA also provides a means to profile and monitor advanced stage cancers to inform treatments.
 
Notwithstanding, a paper published in the June 2018 edition of the Journal of Clinical Oncology  suggests that, “there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer”, and therefore it is still early to adopt cfDNA analysis for routine clinical use.
 

Next generation genome sequencing
 
DNA sequencing is the process of determining the sequence of nucleotides in a section of DNA. The first commercialised method was “Sanger Sequencing”, which was developed in 1977 by Frederick Sanger, a British biochemist and double Nobel Laureate for Chemistry. Sanger sequencing was first commercialized by Applied Biosystems, and became the most widely used sequencing method for approximately 40 years. More recently, higher volume Sanger sequencing has been replaced by next-generation sequencing (NGS) methods, which cater for large-scale, automated genome analyses. NGS, also known as high-throughput sequencing, is a general term used to describe a number of different state-of-the-art sequencing technologies such as Illumina’s Solexa sequencing. These allow for sequencing of DNA and RNA significantly more quickly and cheaply than the previously used Sanger sequencing and has revolutionised the study of genomics and molecular biology.
 
Can AstraZeneca acquire success?
 
Baselgo’s gamble is not helped by the relative dearth of biotech companies engaged in clinical studies of early stage cancers. This significantly narrows AstraZeneca’s options if it wants to buy-in clinical-phase assets to fit with Baselga’s strategy.
 
Notwithstanding, there are at least two biotech companies of potential interest to AstraZeneca. One is Klus Pharma, founded in 2014, based in Monmouth Junction, New Jersey, US, and acquired for US$13m in October 2016 by the Sichuan Kelun Parmaceutical Co., a Chinese group based in Chengdu. Another is Dendreon, a biotech company based in Seal Beach, California, US. In 2014 Dendreon filed for chapter 11 bankruptcy. In 2015 its assets were acquired by Valeant Pharmaceuticals. In 2017, the Sanpower Group, a Chinese conglomerate, acquired Dendreon from Valeant for US$820m.  
 
Klus is recruiting patients with stage-I rectal cancer for a phase 1/2 clinical study of its anti-HER2 antibody drug, and is also working to extend its flagship product, Provenge (sipuleucel-T) as an option for patients with low-risk prostate cancer. Provenge is an autologous cellular immunotherapy. It was the first FDA-approved immunotherapy made from a patient’s own immune cells. Since its approval in 2010, nearly 30,000 men with advanced prostate cancer have been prescribed the therapy.  
 
Unicorns threaten AstraZeneca’s strategy for early cancer
 
Perhaps the biggest threat to Baselga’s gamble is competition from unicorns, which include  Grail, and Guardant Health.  
 
Grail
Grail was spun-out of the gene sequencing giant Illumina in 2016 and backed by more than US$1.5bn in funding, including money from Microsoft cofounder Bill Gates and Amazon founder Jeff Bezos. Grail is on a quest to detect multiple types of cancer before symptoms manifest themselves by way of a single, simple and cheap blood test to find fragments of ctDNA. Grail has made significant progress in its quest to develop highly sensitive blood tests for the early detection of many types of cancer, but it still has to engage in further large-scale clinical studies. At the 2018 ASCO conference, the company presented data from its Circulating Cell-free Genome Atlas (CCGA) project, which showed detection rates ranging from 59% to 92% in patients with adenocarcinoma, squamous cell and small cell lung cancers. The rate of false positives - a major concern for the oncology community - was under 2%.
 
In an effort to improve its technology and its outcomes, Grail has been working with researchers from the Memorial Sloan Kettering Cancer CenterMD Anderson Cancer Center and the Dana-Farber Cancer Institute, to develop a new assay. According to results published in the March 2019 edition of the journal Annals of Oncology, this joint venture has successfully come up with a method, which can detect mutations in NSCLC patients’ blood with high sensitivity. In some cases, the technology was useful when tissue biopsies were inadequate for analysis. The new tool uses Illumina’sultradeep next-generation sequencing", which involves reading a region of DNA 50,000 times, on average, to detect low-frequency variants. White blood cells were also sequenced to filter out "clonal hematopoiesis", which are noncancerous signals that can come from bone marrow. The sequencing information was then fed to a machine learning algorithm developed by Grail to determine mutation readouts.
 
Guardant Health
The other unicorn for AstraZeneca to watch is liquid biopsy developer Guardant Health. Founded in 2013, it is now an US$8bn precision oncology company based in Redwood City, California US. In April 2019 Guardant presented data of its oncology platform at the American Association of Cancer Research (AACR) in Atlanta, US. The platform leverages Guardant’scapabilities in technology, clinical development, regulatory and reimbursement to drive commercial adoption, improve patient clinical outcomes and lower healthcare costs.  In pursuit of its goal to manage cancer across all stages of the disease, Guardant has launched two next-generation sequencing liquid biopsy-based Guardant360 and GuardantOMNI tests for advanced stage cancer patients, for minimal residual disease/recurrence monitoring and for early detection screening, respectively.
 
The Guardant360 test is used to track patients’ responses to drugs and select most effective future therapies. It can identify alterations in 73 genes from cfDNA and has been used by more than 6,000 oncologists, over 50 biopharmaceutical companies and all 28 of the National Comprehensive Cancer Network Centers. 
 
Further, Guardant has launched a new liquid biopsy called Lunar.  At the April 2019 AACR meeting the company presented data of Lunar’s use as a screen for early-stage colorectal cancer. The assay was used to test plasma samples taken from 105 patients with colorectal cancer and 124 age-matched cancer-free controls. It is the test’s utility as a screen for early-stage disease that should interest AstraZeneca most. Guardant expects to position Lunar as something approaching a true diagnostic: a screening test to identify solid tumours in the healthy population. Wider clinical studies of Lunar are expected to start soon and Guardant believes that Lunar’s market opportunity as a cancer screen is some US$18bn and sees a US$15bn market opportunity in recurrence monitoring.
 
Also, in April 2019 Guardant acquired Bellwether Bio,  a privately held company founded in 2015, for an undisclosed sum. Bellwether is focused on improving oncology patient care through its pioneering research into the epigenomic content of cfDNA. This could aid  Guardant in its efforts to develop a cancer screen and further advance its research into cancer detection at earlier stages of the disease.
 
Guardant is well positioned to develop individual early indications of cancer. Grail, on the other hand,  is well positioned to develop a pan-cancer test. Notwithstanding, both companies need to engage in further lengthy, large-scale clinical studies before it will become clear which of these strategies will be more successful. However, both unicorns and other start-ups are potential competitors to AstraZeneca’s endeavours to target early cancer.
 
Takeaways

AstraZeneca’sproposed bold and risky shift in its R&D strategy is to be welcomed since the early detection and treatment of cancer should significantly enhance the chances of a cure, which would radically improve the quality of life for millions and substantially reduce the vast and escalating costs associated with the disease. AstraZeneca has some advantages since over the past two decade it has significantly enhanced its technology and been developing a platform of therapies for early stage cancer. Notwithstanding, for its strategy to target early stage cancer to be successful the company will have to overcome intense, fast growing, well-resourced competition and substantial technical and markets challenges.  
view in full page
 
 
  • The convergence of MedTech and pharma can generate innovative combination devices that promise significant therapeutic and commercial benefits
  • Combination devices such as advanced drug delivery systems offer more precise, predictable and personalized healthcare
  • The global market for advanced drug delivery systems is US$196bn and growing
  • Biosensors play a role in convergence and innovative drug delivery systems
  • Roger Kornberg, Professor of Medicine at Stanford University and 2006 Nobel Prize winner for Chemistry describes the technological advances, which are shaping new medical therapies

    

The convergence of MedTech and pharma and the role of biosensors

MedTech and pharma companies are converging.
What role do biosensors play in such a convergence?
 
Traditionally, MedTech and big pharma have progressed along parallel paths. More recently, however, their paths have begun to converge in an attempt to gain a competitive edge in a radically changing healthcare landscape. Convergence leverages MedTech’s technical expertise and pharma’s medical and biological agents to develop combination devices. These are expected to significantly improve diagnosis, monitoring and treatment of 21st century chronic lifetime diseases, and thereby make a substantial contribution to an evolving healthcare ecosystem that demands enhanced patient outcomes, and effective cost-containment.
 

Conventional diagnostics & drug delivery

Conventional in vitro diagnostics for common diseases are costly, time-consuming, and require centralized laboratories, experienced personnel and bulky equipment. Standard processes include the collection and transportation of biological samples from the point of care to a centralized laboratory for processing by experienced personnel. After the results become available, which usually takes days, the laboratory notifies doctors, who in turn contact patients, and modify their treatments as required. Conventional modes of treatment have mainly consisted of simple, fast-acting pharmaceuticals dispensed orally or as injectables. Such limited means of drug delivery slows the progress of drug development since most drugs are formulated to accommodate the conventional oral or injection delivery routes. Concerns about the quantity and duration of a drug’s presence, and its potential toxic effect on proximal non-diseased tissue drives interest in alternative drug delivery systems and fuels the convergence of MedTech and pharma.



The end of in vitro diagnostics

Roger Kornberg, Professor of Medicine at Stanford University, reflects on the limitations of conventional in vitro diagnostics, and describes how technological advances facilitate rapid point-of-care diagnostics, which are easier and cheaper:

 
 
Converging interest
 
Illustrative of the MedTech-pharma convergence is Verily's (formerly Google Life Sciences) partnership with Novartis to develop smart contact lenses to correct presbyopia, (age-related farsightedness), and for monitoring diabetes by measuring glucose in tears. Otsuka’s, partnership with Proteus Digital Health is another example. This venture expects to develop an ingestible drug adherence device. Proteus already has a FDA-approved sensor, which measures medication adherence. Otsuka is embedding the Proteus’s sensor, which is the size of a sand particle, into its medication for severe mental illnesses in order to enhance drug adherence, which is a serious problem. 50% of prescribed medication in the US is not taken as directed, resulting in unnecessary escalation of conditions and therapies, higher costs to health systems, and a serious challenge for clinical studies.

Drivers of change

The principal drivers of MedTech-pharma convergence include scientific and technological advances, ageing populations, increased chronic lifestyle diseases, emerging-market expansion, and developments in therapies. All have played a role in changing healthcare demands and delivery landscapes. Responding to these changes, both MedTech and pharma have continued to emphasize growth, while attempting to enhance value for payers and patients. This has resulted in cost cutting, and a sharper focus on high-performing therapeutics. It has also fuelled MedTech-pharma convergence and the consequent development of combination devices. According to Deloitte’s 2016 Global Life Science Outlook, combination devices “will likely continue to rapidly increase in number and application”.

MedTech’s changing business model
 
Over the past two decades, MedTech has been challenged by tighter regulatory scrutiny, and continued pressure on healthcare budgets, but advantaged by technological progress, which it has embraced to create new business models. This has been rewarded by positive healthcare investment trends. Over a similar period, pharma has been challenged by the expiry of its patents, advances in molecular science, and changing demographics, but buoyed by increased healthcare spending trends, although the forces that increase health costs are being tempered by a demand for value.

As pharma has been increasingly challenged, so interest has increased in the potential of MedTech to address some of the more pressing healthcare demands in a radically changing healthcare ecosystem. Unlike pharma, MedTech has leveraged social, mobile, and cloud technologies to develop new business models and innovative devices for earlier diagnoses, faster and less invasive interventions, enhanced patient monitoring, and improved management of lifetime chronic conditions.
 
Such innovations are contributing to cheaper, faster, and more efficient patient care, and shifting MedTech’s strategic focus away from curative care, such as joint replacements, to improving the quality of life for patients with chronic long-term conditions. This re-focusing of its strategy has strengthened MedTech commercially, and is rapidly changing the way in which healthcare is delivered, the way health professionals treat patients, and the way patients’ experience healthcare.
 
Josh Shachar, founder of several successful US technology companies and author of a number of patents, describes the new healthcare ecosystem and some of the commercial opportunities it offers, which are predicated on the convergence of MedTech and pharma:
 
 
The decline of big pharma’s traditional business model
 
Pharma’s one-size-fits-all traditional business model, which has fuelled its commercial success over the past century, is based on broad population averages. This now is in decline as patents expire on major drugs, and product pipelines diminish. For example, over the past 30 years the expiry of pharma’s patents cost the industry some US$240bn.

Advances in genetics and molecular biology, which followed the complete sequencing of the human genome in 2003, revolutionized medicine and shifted its focus from inefficient one-size-fits-all drugs to personalized therapies that matched patients to drugs via diagnostic tests and biomarkers in order to improve outcomes, and reduce side effects. Already 40% of drugs in development are personalized medicines, and this is projected to increase to nearly 70% over the next five years.

Today, analysts transform individuals’ DNA information into practical data, which drives drug discovery and diagnostics, and tailors medicines to treat individual diseases. This personalized medicine aims to target the right therapy to the right patient at the right time, in order to improve outcomes and reduce costs, and is transforming how healthcare is delivered and diseases managed. 

 
Personalized medicine

Personalized medicine has significantly dented pharma’s one-size-fits-all strategies. In general, pharma has been slow to respond to external shocks, and slow to renew its internal processes of discovery and development. As a result, the majority of new pharma drugs only offer marginal benefits. Today, pharma finds itself trapped in a downward commercial spiral: its revenues have plummeted, it has shed thousands of jobs, it has a dearth of one-size-fits-all drugs, and its replacement drugs are difficult-to-find, and when they are, they are too expensive.

Illustrative of the advances in molecular science that helped to destroy pharma’s traditional commercial strategy is the work of Kornberg. Here he describes an aspect of his work that is related to how biological information encoded in the genome is accessed to inform the direction of all human activity and the construction of organisms for which Kornberg received the Nobel Prize in Chemistry 2006, and created the foundations of personalized medicine:

 

  
Advanced drug delivery systems
 
Over the past 20 years, as pharma has struggled commercially and MedTech has shifted its business model, drug delivery systems have advanced significantly. Evolving sensor technologies have played a role in facilitating some of these advances, and are positioned to play an increasingly important role in the future of advanced drug delivery. According to BCC Research, the global market for advanced drug delivery systems, which increase bioavailability, reduce side effects, and improve patient compliance, increased from US$134bn in 2008 to some US$196bn in 2014.
 
The growth drivers for innovative drug delivery systems include recent advances of biological drugs such as proteins and nucleic acids, which have broadened the scope of therapeutic targets for a number of diseases. There are however, challenges.

 

Proteins are important structural and functional biomolecules that are a major part of every cell in your body. There are two nucleic acids: DNA and RNA. DNA stores and transfers genetic information, while RNA delivers information from DNA to protein-builders in the cells.


For instance, RNA is inherently unstable, and potentially immunogenic, and therefore requires innovative, targeted delivery systems. Such systems have benefitted significantly from progress in biomedical engineering and sensor technologies, which have enhanced the value of discoveries of bioactive molecules and gene therapies, and contributed to a number of new, advanced and innovative combination drug delivery systems, which promise to be more efficacious than conventional ones. 
 
Biosensors
 
The use of biosensors in drug delivery system is not new. The insulin pump is one example. Introduced in its present form some 30 years ago, the insulin pump is a near-physiologic programmable method of insulin delivery that is flexible and lifestyle-friendly.

Biosensors are analytical tools, which convert biological responses into electrical signals. In healthcare, they provide analyses of chemical or physiological processes and transmit that physiologic data to an observer or to a monitoring device. Historically, data outputs generated from these devices were either analog in nature or aggregated in a fashion that was not conducive to secondary analysis. The latest biosensors are wearable and provide vital sign monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in remote regions. 
 
Increased accuracy and speed
 
The success of biosensors is associated with their ability to achieve very high levels of precision in measuring disease specific biomarkers both in vitro and in vivo environments. They use a biological element, such as enzymes, antibodies, receptors, tissues and microorganisms capable of recognizing or signalling real time biochemical changes in different inflammatory diseases and tumors. A transducer is then used to convert the biochemical signal into a quantifiable signal that can be transmitted, detected and analysed, and thereby has the potential, among other things, for rapid, accurate diagnosis and disease management.
 
Recent technological advances have led to the development of biosensors capable of detecting the target molecule in very low quantities and are considered to have enhanced capacity for increased accuracy and speed of diagnosis, prognosis and disease management. Biosensors are robust, inexpensive, easy to use, and more importantly, they do not require any sample preparation since they are able to detect almost any biomarker  - protein, nucleic acid, small molecule, etc. - within a pool of other bimolecular substances. Recently, researchers have developed various innovative strategies to miniaturize biosensors so that they can be used as an active integral part of tissue engineering systems and implanted in vivo.

 
Market for biosensors
 
Over the past decade, the market in biosensors and bioinformatics has grown; driven by advances in artificial intelligence (AI), increased computer power, enhanced network connectivity, miniaturization, and large data storage capacity.

Today, biosensors represent a rapidly expanding field estimated to be growing at 60% per year, albeit from a low start. In addition to providing a critical analytical component for new drug delivery systems, biosensors are used for environmental and food analysis, and production monitoring. The estimated annual world analytical market is about US$12bn, of which 30% is in healthcare. There is a vast market expansion potential for biosensors because less than 0.1% of the analytical market is currently using them.

A significant impetus of this growth comes from the healthcare industry, where there is increasing demand for inexpensive and reliable sensors across many aspects of both primary and secondary healthcare. It is reasonable to assume that a major biosensor market will be where an immediate assay is required, and in the near-term patients will use biosensors to monitor and manage treatable lifetime conditions, such as diabetes cancer, and heart disease.

The integration of biosensors with drug delivery
 
The integration of biosensors with drug delivery systems supports improved disease management, and better patient compliance since all information in respect to a person’s medical condition may be monitored and maintained continuously. It also increases the potential for implantable pharmacies, which can operate as closed loop systems that facilitate continuous diagnosis, treatment and prognosis without vast data processing and specialist intervention. A number of diseases require continuous monitoring for effective management. For example, frequent measurement of blood flow changes could improve the ability of health care providers to diagnose and treat patients with vascular conditions, such as those associated with diabetes and high blood pressure. Further, physicochemical changes in the body can indicate the progression of a disease before it manifests itself, and early detection of illness and its progression can increase the efficacy of therapeutics.
 
Takeaways

Combination devices, which are triggered by the convergence of MedTech and pharma, offer substantial therapeutic and commercial opportunities. There is significant potential for biosensors in this convergence. The importance of biosensors is associated with their operational simplicity, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated into different functions using the same chip. However, there remain non-trivial challenges to reconcile the demands of performance and yield to simplicity and affordability.
 
 
view in full page