Publications


Sponsored
Will China become a world leader in health life sciences and usurp the US?
 
After World War II, the US captured the global lead from Europe in life sciences thanks to the large American domestic market, its strong network of university research laboratories, competent regulation, effective pricing regimens and generous federal R&D funding.
 
America’s leadership in life sciences is slipping
 
Over the past two decades, as China has systematically upgraded its economy from low-grade to high-grade production, it has come to realize the significance of the health life sciences and Beijing has become determined to win a larger share of the industry’s activity. During this time America’s leadership position in the life sciences industry has slipped.
 
  • Will China usurp the US and become a world leader in health life sciences?
  • What could the erosion of the life sciences industry mean for the US economy?
  • What can American life sciences corporations do to reduce or slow their market slippage?
 
Health life sciences
 
Health life sciences refers to the application of biology and technology to improve healthcare. It includes biopharmaceuticals, medical technology, genomics, diagnostics and digital health and is one of the future growth industries positioned to radically change the delivery of healthcare, substantially reduce the morbidity and mortality of a range of chronic and incurable diseases and save healthcare systems billions. The life sciences industry plays a key role in supporting the economies of the US and China as well as other nations and helps them to compete internationally. The sector requires a complex ecosystem, which integrates high-tech research, large, long-term investments of capital in the face of significant technological, market and regulatory risks, skilled labour, specific manufacturing skills, intellectual property (IP) protection and policy support. According to a 2019 Deloitte’s report on health life sciences the global market size of the industry is projected to grow from US$7.7trn in 2017 to US$10trn by 2022.
 
Reason’s for America’s slippage
 
America’s slippage in its life sciences industry is due to:
  • Increased fair competition from a number of nations, including the UK, and increased unfair competition from China who aggressively steals US IP to piggyback on American life-sciences innovations in order to benefit from enhanced therapies without having to pay their fair share for the costly R&D. China then uses its government’s monopsony power as a purchaser of life sciences offerings to limit the prices of US and other international firms
  • Recent US Administrations’ lukewarm support for the industry. Federal biomedical research funding has been cut in real terms. Reimbursement policies are changing to a value-based approach and pricing policies have tightened. Such policies create uncertainty regarding the government’s willingness to pay for future treatments and the research necessary to discover and bring them to market. The US is also falling behind in providing innovative tax incentives for the industry
  • American life sciences corporations’ reluctance and inability to adapt their strategies and business models to changing international markets.
 
Permanent economic damage
 
The Chinese competitive threat is real and significant. It is important for the US to maintain a competitive life-sciences sector since it generates high-skilled, high-paying jobs and its product offerings are sold throughout the world and the industry is a key component of the US traded economy. A weaker American competitive position in the life sciences could mean a lower value for the dollar, a larger trade deficit, plant closures and job losses. China and other nations, which are gaining global market share at the expense of the US, could cause significant damage to the American life-sciences industry.
 
Creating a health life sciences industry is challenging enough, recreating one after it has lost significant market share is even more challenging, if not impossible. We suggest that to reduce to possibility of this happening US life sciences corporations might consider changing the mindsets of their leaders and demonstrate a greater willingness to learn from and engage with Chinese start-ups, especially those in adjacent industries with AI and machine learning capabilities and experience. The cost of doing this will be to give up some IP, which might be worth doing given the potential financial benefits from such a strategy.

 
A “bullish” American perspective
 
The generally accepted Western perspective is that the US excels at visionary research and moon-shot projects and will always be the incubator for big ideas. The reasons for this include: (i) American education is open, encourages individuality and rewards curiosity and its universities have consistently produced vast numbers of innovative discoveries in the life sciences, (ii) American scientists have been awarded the majority of Nobel prizes in physiology/medicine, physics and chemistry, and (iii)  America is the richest nation in the world. This suggests that there are no apparent reasons why the US should not continue as a world leader in health life sciences.

By contrast, China has stolen and copied America’s intellectual property (IP) for years and is a smaller economy fraught with politico-economic challenges. Although China’s economic growth has lifted hundreds of millions of people out of poverty, China remains a developing country with significant numbers of people still living below the nation’s official poverty level. Beijing has challenges balancing population growth with the country’s natural resources, growing income inequality and a substantial rise in pollution throughout the country. Further, China’s educational system is conformists and not geared to producing scientists known for making breakthrough discoveries. This is borne-out by the fact that China only has been awarded two Nobel prizes for the sciences: one for physiology and medicine in 2015 and another for physics in 2009.

 
Copiers rather than inventors
 
Over the past four decades Chinese scientists, with the tacit support of Beijing, have aggressively and unethically stolen Western technologies and scientific knowhow. According to findings of a 2017 research report from the US Intellectual Property (IP) Commission entitled The Theft of American Intellectual Propertythe magnitude of "Chinese theft of American IP currently costs between US$225bn and US$600bn annually."

America’s response to China’s IP theft has been to adopt the moral high-ground, dismiss China as an unscrupulous nation not worthy of investment and focus on commercialising its discoveries with “single bullet” product offerings and marketing them in wealthy regions of the world, predominantly North America, Europe and Japan. Over the past decade, this strategy has been supported by a US Bull market in equities, which started in 2009, outpaced economic growth in most developed nations and led to a significant degree of satisfaction among C-suites and boards of directors of US life sciences corporations, which did not perceive any need to adjust their strategies and business models despite some market slippage and changing market conditions.

 
Confucian values support conformism rather than discovery
 
Although China has benefitted economically from the theft of American IP, the American view tends to be that China is unlikely to become a world leader in the life sciences because the nation has not produced a cadre of innovative scientists and its education system is unlikely to do so in the near to medium term. Chinese education encourages students to follow rather than to question. Indeed, Confucian values remain a significant influence on Chinese education and play an important role in forming the Chinese character, behaviour and way of living. Confucianism aims to create harmony through adherence to three core values: (i) filial piety and respect for your parents and elders, (ii)  humaneness, the care and concern for other human beings, and (iii) respect for ritual. According to Confucian principles, “a good scholar will make an official”. Thus, some of China’s best scientists leave their laboratories for administrative positions.
 
Further, Chinese universities tend to bind students to their professors who expect unquestioning loyalty. Scepticism towards generally accepted scientific theories is discouraged, especially when they are held by senior academics. Also, China unlike the US, does not tolerate “failure”, and this incentivises Chinese scientists to conduct “safe” research that yields quick and “achievable” outcomes. All these factors conspire to discourage high risk creative scientific activity and encourages safer, “copycat” research endeavours.
 
The strength of the US$ and the US economy
 
America’s global leadership in the life sciences is supported by the fact that the US is the world’s richest and most powerful nation. In nominal terms (i.e., without adjustment for local purchasing power) the US and China have GDPs of US$19trn and US$12trn respectively and  populations of 326m and 1.4bn. Further, the US has an “unrivalled” global trading position: the US dollar is the strongest currency in the world and dominates the overwhelming percentage of all international trade settlements: 70% of all world trade transactions are in US$, 20% in €’s and the rest in Asian currencies, particularly the Japanese ¥ and increasingly the Chinese ¥. Also, US dollar holdings make up the largest share of foreign exchange reserves and the effect of this is to maintain the high value of the US$ compared with other currencies and provide US corporations with significant profits, US citizens with cheap imports and the US government with the ability to refinance its debts at low interest rates.
 
An Asian context
 
We suggest that it is increasingly important for American health life science professionals to get a better understanding of China and Asia. The Asian perspective described here is drawn from three recent books: The New Silk Roads: The Present and Future of the World by Peter Frankopan, The Future is Asian by Parag Khanna and AI Super-Powers: China, Silicon Valley and the New World Order published in late 2018 by Kai-Fu Lee.  

Crudely put: the 19th century was British, the 20th century American and the 21st century is expected to be Asian. The era of breakthrough scientific discoveries and stealing American IP is over, and we have entered an “age of implementation”, which favours tenacious market driven Chinese firms. “Asians will determine their own future; and as they collectively assert their interests around the world, they will determine ours as well”, says Khanna. This is starkly different to American prognosticators who assume that the world will be made in the American image, sharing American values and economics.
Asian view of the US$

Some observers suggest that there are chips appearing in the giant US edifice of international trade described above. The current US Administration’s policies have triggered and intensified discussions in Europe and Asia about America’s dominant global economic position and suggest that the US$ might be starting to weaken against a basket of currencies as China, Russia, Iran, Turkey and other nations, choose to use local currencies for some international trade transactions, which they then convert into gold. Further, central banks are tightening their monetary policies and adjusting their bond purchasing strategies. A common US view is that such trading activities are so small relative to global US$ transactions they will neither weaken the US$ nor dent America’s pre-eminent global trading position.
You might also like:

Can Western companies engage with and benefit from China?
Notwithstanding, replacing the US$ with the Chinese ¥ seems to be part of Beijing’s long-term strategy, as Beijing encourages its trading partners to accept the ¥ as payment for Chinese exports. China’s recent trading agreements with Canada and Qatar for instance have been based upon local currencies rather than the US$. China, which is the biggest importer of oil, is preparing to launch a crude oil futures contract denominated in Chinese ¥ and convertible into gold. European, Asian and Middle Eastern countries have embarked on domestic programs to exclude the US$ from international trade transactions. Also, oil exporting countries are increasingly able to choose which currencies they wish to trade in. At the same time, oil-producing countries no longer seem so interested in turning their revenues into “petrodollars. For the past decade, President Putin of Russia has been calling for the international community to re-evaluate the US$ as the international reserve currency. All this and more suggests that increasingly, emerging economies may transition from their undivided dependence on the US$ for international trade settlement to a multipolar monetary arrangement. Whilst small relative to the full extent of global trade, it is instructive to view these changes within a broader Asian context.
 
The US has had little exposure to China and Asia
 
One outcome of America’s pre-eminent global economic position and the financial success of American life sciences companies is that corporate leaders and health professionals tend to have little or no in-depth exposure to Chinese and Asian culture and markets. For example, few Fortune 500 senior executives have worked in China; few American life sciences corporations have sought in-depth briefings of Asian markets and few US students and scientists have studied or carried out research in China. Instead, American life science corporate leaders tend to be US-centric; they condemn China for its IP theft and recommend not to invest in China because a condition of doing so is that you are obliged to part with some of your IP.
 
Asia a potential economic powerhouse
 
This distancing has resulted in life science professionals “misdiagnosing” China in a number of ways, which we will discuss. One misdiagnosis is to conflate China with Asia. Asia is comprised of 48 countries. East Asia includes China, Japan and North and South Korea. South Asia includes India, Pakistan and Bangladesh. South East Asia includes Indonesia, Malaysia, Philippines, Singapore and Thailand. These three sub-regions link 5bn people through trade, finance, infrastructure and diplomatic networks, which together represent 40% of the world’s GDP. China has taken a lead in building new infrastructure across Asia - the new Silk Roads - but will not necessarily lead this vast region alone. Rather, as Khanna reminds us, “Asia is rapidly returning to the centuries-old patterns of commercial and cultural exchanges, which thrived long before European colonialism and American dominance”.
 
The difference between IP theft and imitating ‘what works

Market driven Chinese start-ups, supported by the government, are expected to transform China into a world leader in health life sciences by 2030. The thing to understand about China is that it is not just a few start-ups that steal and copy American IP but thousands, which then aggressively compete. This entails cutting prices, improving and adapting their product offerings, developing leaner operations and aligning their strategies and business models to the demands of different markets. The vast scale of this activity has led to a unique cadre of über agile Chinese entrepreneurs, who imitate successful business models and then engage in value added culture-specific product development processes. This has led to Chinese companies becoming exemplary “market driven” implementors. By contrast American companies tend to be “mission driven” and operate a “single bullet” business model and are either slow or reluctant to adapt to the demands of different markets. This results in US discoveries being exploited in Asia by Chinese rather than American companies. We suggest that there are significant benefits to be derived from American life sciences companies developing joint ventures with market driven Chinese start-ups even if it means surrendering some IP.
 
As a postscript, it is worth pointing out that the first Chinese patent was only granted in 1985 and recently, after decades of widespread theft, IP protection in China has improved at lightning speed. As Chinese companies issue more patents, the keener they are to protect them. According to the World Intellectual Property Organization in 2017 China accounted for 44% of the world’s patent filings, twice as many as America.

 
US inventions exploited in Asia by Chinese start-ups
 
An illustration of a disruptive life science technology invented in the US but exploited faster and more extensively in China is CRISPR-Cas9 (an acronym for Clustered Regularly Interspaced Short Palindromic Repeats), which is generally considered to be the most important invention in the history of biology.  The initial discovery was made in 2012 by a collaboration between Jennifer Doudna, at the University of California, Berkeley, USA and French scientist Emmanuelle Charpentier. Applications of CRISPR technology are essentially as infinite as the forms of life itself. Since its discovery, modified versions of the technology by Chinese scientists have found a widespread use to engineer genomes and to activate or to repress the expression of genes and launch numerous clinical studies to test CRISPR-Cas9 in humans.
 
Virtuous circle
 
Notwithstanding, transforming CRISPR genomic editing technologies into medical therapies requires mountains of data and advanced AI capabilities. China has both. The more genomic data you have the more efficacious clinical outcomes are likely to be. The better your clinical outcomes the more data you can collect. The more data you collect the more talent you attract. The more talent you attract the better the clinical outcomes. China is better positioned than America to benefit from this virtuous circle. China’s less than stringent regulation with regards to privacy and storing personal data gives it a distinct competitive advantage over American and Western life sciences companies. China also has more efficient means than any Western nation for collecting and processing vast amounts of personal data.
 
Collecting personal data

Any casual visitor to China will tell you that one of the striking differences with Western nations is that the Chinese economy is cashless and card-less. Citizens pay for everything and indeed organise their entire lives with a mobile app called WeChat, a multi-purpose messaging, social media and mobile payment app developed by TencentWeChat was first released in 2011 and by 2018 it was one of the world's largest standalone mobile apps, with nearly 1bn daily users who every day send about 38bn messages. Not only is WeChat China's biggest social network it is also where people turn to book a taxi, hotel or a flight, order food, make a doctor’s appointment, file police reports, do their banking or find a date and has become an integral part of the daily life of every Chinese citizen. State-run media and government agencies also have official WeChat accounts, where they can directly communicate with users. Further, an initiative is underway to integrate WeChat with China’s electronic ID system. It may be hard for people outside of China to grasp just how influential WeChat has become. There is nothing in any other country that is comparable to WeChat, which captures an unprecedented amount of data on citizens that no other company elsewhere in the world can match. This represents a significant competitive advantage. Applying AI and machine learning technologies to such vast data sets provide better and deeper insights and patterns. These vast and escalating data sets, and advanced AI capabilities for manipulating  them, give China a significant competitive advantage in the high growth life sciences industry, which  increasingly has become digital.
 
 Processing personal data
 
AI is another example of  a technology invented in the West and implemented much faster in China. The “watershed” moment for China was in 2017, when AlphaGo became the first computer program to defeat a world champion at the ancient Chinese game of Go. Since then, China has been gripped by “AI fever”.

Until recently AI machines were not much better than trained professionals at spotting anomalies and mutations in assays and data. This changed in early-2,000 with the ubiquitous spread of mobile telephony and the confluence of vast data sets and the development of neural networks, which made the onerous task of “teaching” a computer rules redundant. Neural networks allow computers to approximate the activities of the human brain. So, instead of teaching a computer rules, you simply feed it with vast amounts of data and neural networking and deep learning technologies identify anomalies and mutations in seconds with exquisite accuracy.

The Beijing Genetics Institute

An illustration of the scale and seriousness of China’s intent to become a world-leader in life sciences and to eclipse similar initiatives by the US is the 2016 launch of a US$9bn-15-year national initiative to develop technologies for interpreting genomic and healthcare data. This national endeavour followed the launch in 1999 of the Beijing Genomics Institute (BGI), which today is a recognised global leader in next generation genetic sequencing. In 2010, BGI received US$1.5bn from the China Development Bank, recruited 4,000 scientists and established branches in the US and Europe. In 2016 BGI created the China National GeneBank (CNGB) on a 47,500sq.m site in Shenzhen, which benefits from BGI’s high-throughput sequencing and bio-informatics capacities. CNGB officially opened in July 2018 and is the largest gene bank of its kind in the world. Dozens of refrigerators can store samples at temperatures as low as minus 200 degrees Celsius, while researchers have access to 150 domestically developed desktop gene sequencing machines and a US$20m Revolocity machine, known as a “super­sequencer”. The Gene Bank enables the development of novel healthcare therapies that address large, fast growing and underserved global markets and to further our understanding of genomic mechanisms of life. Not only has CNGB amassed millions of bio-samples it has storage capacity for 20 petabytes (20m gigabytes) of data, which are expected to increase to 500 petabytes in the near future. The CNGB represents the new generation of a genetic resource repository, bioinformatics database, knowledge database and a tool library, “to systematically store, read, understand, write, and apply genetic data,” says Mei Yonghong, its Director.

US life sciences benefit by engaging with Chinese companies

Lee, in his book about AI, suggests that it is not so much Beijing’s policies that keep American firms out of the Chinese markets, but American corporate mindsets, which misdiagnose Chinese markets, do not adapt to local conditions and fail to understand the commercial potential of Chinese start-ups and consequently get squeezed out of the Chinese market.

This is what happened as Google failed to Baidu, Uber failed to DiDi, Twitter failed to Weibo, eBay failed to TaoBao, and Groupon failed to Meituan-Dianping. We briefly describe the demise of Groupon and point to lessons, which can be learned from it.
 
Lessons from Groupon’s failure in China

Groupon failed to adapt its core offering when group discounts in China faded in popularity and as a consequence it rapidly lost market share. Meituan, founded in 2010 as a Chinese copy of Groupon, quickly adapted to changing market conditions by extending its offerings to include cinema tickets, domestic tourism and more importantly, “online-to-offline” (O2O) services such as food and grocery delivery, which were growing rapidly.
 
In October 2015, Meituan merged with Dianping, another Chinese copy of Groupon, to become Meituan-Dianping the world's largest online and on-demand booking and delivery platform. The company has become what is known as a transactional super app, which amalgamates lifestyle services that connect hundreds of millions of customers to local businesses. It has over 180m monthly active users and 600m registered users and services up to 10m daily orders and deliveries. In the first half of 2018 Meituan-Dianping facilitated 27.7bn transactions (worth US$33.8bn) for more than 350m people in 2,800 cities. That is 1,783 enabled services every second of every day, with each customer using the company’s services an average of three times a week. Meituan-Dianping IPO’d in 2018 on the Hong Kong stock exchange and raised US$4.2bn with a market cap of US$43bn.
 
Efficiency also drives innovation. Meituan-Dianping’s Smart Dispatch System, introduced in 2015, schedules which of its 600,000 motorbike riders will deliver the millions of food orders it fulfils daily. It now calculates 2.9bn route plans every hour to optimize a rider’s ability to pick up and drop off up to 10 orders at once in the shortest time and distance. Since Smart Dispatch launched, it has reduced average delivery time by more than 30% and riders complete 30 orders a day, up from 20, increasing their income. In 2019, the American business magazine Fast Company ranked Meituan-Dianping as the most innovative company in the world.
 
Takeaways
 
Although Meituan-Dianping and other companies we mention may not be well known in the West and are not in the health life sciences industry, they are engaged in highly complex digital operations disguised as simple transactions, which enhance the real-world experiences of hundreds of millions of consumers and millions of merchants. To achieve this the companies have amassed vast amounts of data and have perfected AI and machine learning technologies, which make millions of exquisitely accurate  decisions every hour, 24-7, 365 days a year. Such AI competences are central to the advancement of health life sciences. American life science professionals might muse on the adage: “make your greatest enemy your best friend” and consider trading some of their IP to joint venture with fast growing agile Chinese data companies in a strategy to restore and enhance their market positions.
view in full page
  • People and doctors often miss early warning signs of cancer
  • Nearly 50% of all cancers are diagnosed late when they have already spread
  • Each year cancer kills 8m people worldwide and cost billions
  • 40% of cancer deaths could be prevented by early detection
  • Traditional tissue biopsies used to diagnose cancer are invasive, slow, costly and often yield insufficient tissue
  • New non-invasive tests are being devised to detect cancer early
  • Such tests are positioned to significantly reduce the vast and growing global burden of cancer
  • But before these tests enter clinics, they need to overcome a number of challenges
 

A paradigm shift in cancer diagnosis


How close are we to developing a simple, cheap, rapid and exquisitely sensitive non-invasive test to diagnose cancer in healthy-looking people?

Recently, attention has been drawn to a breathalyser test for cancer diagnosis, which is just starting a significant 2-year clinical study in the UK. In 2018, a “liquid biopsy” was popularly heralded as “the holy grail” of cancer diagnosis, only quickly to be quashed by medical experts who warned that this conclusion was “premature” and “misleading”. Further, image recognition is increasingly being used as a technique to detect cancer. Given the extent and depth of these endeavours it seems reasonable to assume that, within the next decade, gold-standard solid tumour biopsies for detecting cancer will be replaced by non-invasive diagnostic techniques.

 
In this Commentary
 
In this Commentary we describe evolving innovative techniques to detect cancer early, which include a breathalyser, a liquid biopsy and an image recognition test. But first we: (i) briefly describe the epidemiology of cancer, (ii) explain the extent, implications and some of the causes of late diagnosis, which is driving the development of these new non-invasive detection techniques, (iii) describe how ‘personalized’ medicine, predicated upon the molecular signatures of cancer tumours, has become routine clinical practice and demand more efficacious techniques to understand the complexities of cancer.
 
Cancer snapshot
 
Cancer is among the leading causes of death worldwide. In 2012, there were 14.1m new cases and 8.2m cancer-related deaths worldwide. 57% of these new cancer cases occurred in less developed regions of the world, which include Central America, parts of Africa and Asia. 65% of cancer deaths occurred in these regions. The number of new cancer cases per year is expected to rise to 23.6m by 2030. It is estimated that over 40% of cancer cases are preventable. In the UK there are more than 360,000 new cancer cases and over 166,000 cancer deaths every year. Since the early 1990s, incidence rates for all cancers combined in England have increased by 13% each year. Annual NHS costs for cancer services are over £5bn, but the cost to British society - including costs for loss of productivity - is over £18bn. In the US, over 1.7m new cases of cancer were diagnosed in 2018 and some 0.61m people died from the disease. It is estimated that in the US the annual national expenditure on cancer is some US$150bn. Early diagnosis and cancer prevention would significantly reduce  cancer morbidity and mortality and achieve large cost savings for healthcare systems.
 
The challenge of late cancer diagnoses

The significance of developing a simple non-invasive test to diagnose cancer early cannot be over-emphasised. For a number of reasons, almost half of people who get cancer are diagnosed late, which makes treatment less likely to succeed, reduces chances of survival and significantly increases the cost of care. For instance, in the UK about 25% of all cancer cases only are diagnosed following presentation in A&E. The vast majority of these cases are already at a late stage, when treatment options are limited, and survival is poorer. Further, a substantial percentage of people neither avail themselves  of cancer screening nor present themselves to primary care physicians with early symptoms. A good example of this is cervical cancer screening in the UK, which is offered every three years to all women aged between 25 and 64. Despite the test only taking a few minutes, each year over 1.3m women choose not to attend, and non-attendance is the biggest risk factor to developing cervical cancer. Each year, some 220,000 women in the UK are diagnosed with cervical abnormalities and over 800 women die from the disease.
 
Implications of inefficient healthcare systems
 
Late diagnosis not only occurs for non-compliance. Some cancers are asymptomatic while others have general non-specific symptoms and are often mistaken for lesser ailments. Further, inefficiencies in healthcare systems can lead to late diagnosis and increased cancer morbidity and mortality. For example, in February 2019 the UK’s National Audit Office (NAO) published an “Investigation into the management of health screening”, which concluded that none of the key screening programs in England - for bowel, breast or cervical cancer - met their targets because of management and IT failures.  As a consequence, about 3m women across England have not had a cervical cancer test for at least three-and-a-half years. In 2018, more than 150,000 cervical screening samples piled-up in laboratories due to outdated IT systems, staff shortages and changes in testing procedures. Faulty IT systems also are reported to have resulted in 5,000 women not being invited for breast screening, which in England is currently offered once every three years to women aged 50 to 70. According to the NAO report, in 2017 450,000 women missed a final breast cancer screening test because of a system failure, which is believed to have been responsible for some 270 deaths.
 
Molecular biology challenges to gold standard solid tissue biopsies
 
In the past decade, ‘personalized’ medicine predicated upon the molecular signatures of cancer tumours has become routine clinical practice. The identification on tumour tissue of predictive biomarkers of response to personalized targeted therapies is now considered optimal patient care. Notwithstanding, such treatment faces a number of biological and technological challenges associated with traditional solid tumour biopsies' access to tumours and the heterogeneity of tumours.
 
While some cancer tumours are easily accessed, others have limited accessibility because they are either deep in the body or embedded in critical organs. This makes obtaining a comprehensive “picture” of such tumours challenging and may increase clinical complications. Further, tissue samples from different regions of the same tumour may differ and tissue specimens from primary and metastasized tumours can also differ. In addition, studies have shown the dynamic changes of tumour features over time and the emergence of therapy-resistance. Thus, inter- and intra-tumour heterogeneity pose a pivotal challenge to guide clinical decision-making in cancer therapy as traditional biopsies may be unable to capture a complete genomic landscape of a patient’s tumour. 
 
A non-invasive test, such as sampling blood, urine, salvia and breath can provide the same genetic information as a solid tissue biopsy and has certain added advantages, which include: (i) they are a source of fresh tumour-derived material, unhampered by preservatives and (ii) they provide an alternative sample type in routine clinical practice when tumour sampling is unavailable, inappropriate or difficult to obtain.
Breath test to diagnose cancer

Because of the challenges associated with traditional biopsies, clinical attention is turning to non-invasive tests and recently to a breath test, which promises to be able to diagnose cancer early. A study to detect cancer through breath, which was carried out by researchers from Imperial College London and the Karolinska Institutet in Sweden and presented at the 2017 European Cancer Congress (ECC) in Amsterdam, Holland was promising but inconclusive.

You might also like:

World’s first blood tests that detect and locate cancer


 
The study aimed to test whether a “chemical signature”, composed of five substances, which seemed to typify cancer could be the basis for a diagnostic test for the disease. Breath samples were tested of some 335 patients attending leading London hospitals. Of these, 163 had been diagnosed with oesophageal or stomach cancer and 172 presented with upper gastrointestinal symptoms, but without any evidence of cancer after an endoscopy.

Findings suggested that four of the five chemical substances were expressed differently in the breath samples from those diagnosed with cancer, compared to those where no cancer had been found. The breath test was able to correctly indicate cancer in around 80% of patients who had cancer (sensitivity), and able to correctly exclude cancer in around 80% of cases, which did not have cancer, (specificity). Although the findings were promising, researchers concluded that, "The study shows the potential of breath analysis in non-invasive diagnosis of oesophageal cancer. The potential benefits of this technology to patients may be early diagnosis and improved chance of survival. If placed as an endoscopy triage test, the benefits to healthcare systems may include cost-saving through reducing the number of negative endoscopies. However, these findings must be further validated in an un-enriched larger population of patients undergoing diagnostic endoscopy and in false negative patients the value of repeat testing should be established".

 
Expanded clinical study for breath biopsy

Following these promising conclusions a large two-year clinical trial of a breath test, called the Breath Biopsy, supported by Cancer Research UK was started in January 2019 at Addenbrooke’s Hospital in Cambridge, UK, and aims to detect whether exhaled airborne molecules called volatile organic compounds (VOCs) can be useful in detecting cancer. The study expects to recruit 1,500 participants including healthy people to act as a control group. Scientists hope the study will lead to a simpler, cheaper method of spotting cancers at an early stage when they are more likely to respond to treatment. Study participants will be asked to breathe into a device called the Breath Biopsy, which has been developed by Owlstone Medical, a private company founded in 2003 and based in Cambridge. 
 
Breath biopsy to target two challenging cancers
 
In the first instance, only patients with oesophageal and stomach cancers will be invited to try the Owlstone breath biopsy.  Both of these cancers are aggressive and tend to be diagnosed late because in the early stages they either cause no symptoms - in the case of oesophageal cancer - or symptoms that are vague and easy to mistake for other less serious conditions - in the case of stomach cancer. Currently, oesophageal and stomach cancers are diagnosed using endoscopy, which involves a camera attached to a flexible tube being passed down the throat. The procedure is invasive, it risks complications and is expensive. If the breath test is successful with these two cancers, it will be expanded to include patients with prostate, kidney, bladder, liver and pancreatic cancers.
 

Oesophageal and stomach cancers
 
Oesophageal cancer is the 7th most commonly occurring cancer in men and the 13th most commonly occurring cancer in women. In 2018, there were over 0.5m new cases diagnosed globally. The 5-year survival rate for patients with oesophageal cancer is less than 20%. Each year, there are around 9,000 new cases diagnosed in the UK and around 7,900 oesophageal cancer deaths. In the US, it is estimated that there were 17,290 new cases of the disease and 15,850 deaths in 2018
 

Stomach cancer is the 4th most commonly occurring cancer in men globally and the 7th most commonly occurring cancer in women. The disease represents the 3rd cause of cancer death in the world with about 723,000 deaths each year, which accounts for 8.8% of all cancer deaths. In 2018, there were over 1m new cases of stomach cancer worldwide. The five-year survival rate for the disease is about 30% and the 10-year survival rate 15%. According to the American Cancer Society's estimates, over 27,000 patients are expected to be diagnosed with stomach cancer in the US in 2019, of whom some 11,000 are expected to die. In the UK, there are around 7,000 new stomach cancer cases every year and around 4,500 stomach cancer deaths.

 
Chemical signature

According to the lead investigator of the breath biopsy clinical study, Rebecca Fitzgerald, professor of Cancer Prevention at Cambridge University and Consultant in Gastroenterology and General Medicine at Addenbrooke's Hospital, “We urgently need to develop new tools, like this breath test, which could help to detect and diagnose cancer earlier, giving patients the best chance of surviving their disease. Through this clinical trial we hope to find signatures in breath needed to detect cancers earlier. It’s the crucial next step in developing this technology.”
 
Liquid biopsies

Following the presentation of research findings of liquid biopsy clinical studies at the 2018 annual conference of the American Society of Clinical Oncology (ASCO) there were press reports suggesting that the new test was the holy grail” of cancer diagnosis. This was quickly quashed by medical experts who described the press claims as “premature” and “misleadingly”.

A “liquid biopsy“ has the potential to detect and classify mutations from minute fragments of circulating tumour in a blood sample and entails assessing circulating tumour cells (CTCs) and cell-free DNA (cfDNA) and its subsets of circulating tumour DNA (ctDNA) and cell-free RNA (cfRNA). Liquid biopsies are considered to provide significantly superior biomarkers than the traditional cancer biomarkers such as the prostate specific antigen (PSA) and cancer antigen 125 (CA125) tests, which have been used for decades to support the diagnosis and management of cancer. With the exception of the PSA test, which is used as a screening test for prostate cancer, none of the traditional cancer tests are recommended for population screening because their sensitivity and specificity are not accurate enough.

 
Liquid biopsies effective only after diagnosis
 
While promising, liquid biopsies represent an emerging technology, which has been shown to be effective in personalizing therapy after diagnosis but has yet to demonstrate its clinical utility against the current gold standard tissue biopsies for confirming a cancer diagnosis. There is a relative dearth of evidence on the capabilities of liquid biopsies for detecting cancer early. Expert consensus suggests that liquid biopsies have significant limitations and the tests are not sufficiently developed for widespread use. Liquid biopsies are neither as good nor better than existing screening methods and are not ready for meaningful clinical application because their accuracy, reliability, and reproducibility are still unknown.
 
US biotech start-up conducting large clinical studies of liquid biopsies
 
Notwithstanding, the development of liquid biopsies continue at a pace. Not least the R&D being undertaken by GRAIL Inc., a private US biotech company, spun out in 2015 from San Diego-based Illumina, the world’s largest gene sequencing company. GRAIL is currently valued at US$2.5bn and since its inception has raised US$1.5bn. The company has started two large long-term clinical studies aimed at developing a liquid biopsy for early cancer detection.
 
Early test results suggest that it is not money holding these liquid biopsies back, but basic biology. To evaluate potential blood screens, thousands of patients will have to get tested - and then researchers will have to wait for some of them to actually get cancer, which is the only way to determine not only the predictive power of the tests, but also whether they lead to improved patient outcomes.
 
Image recognition and medical diagnosis
 
Image recognition is another technology being used to develop non-invasive cancer diagnostic tests. Examples include Google’s Lymph Node Assistant (LYNA), which claims to be better than doctors at spotting late-stage breast cancer. LYNA can detect secondary cancer cells in medical scans with 99% accuracy. Secondary cancer cells are responsible for spreading cancer and detecting them is time-consuming and challenging for pathologists.

A study published in the August 2018 edition of Nature Mind reports findings on the first phase of a study undertaken by Moorfields Eye Hospital and Google’s DeepMindwhich enables computers to analyse high-resolution 3D scans of the back of the eye to detect more than 50 eye conditions. 

A study published in the October 2017 edition of the journal Frontiers in Psychology, report findings of research conducted by scientists from  Macquarie University in Sydney, Australia, which suggests facial shape analysis can correctly detect markers of physiological health in individuals of different ethnicities.

Shanghai based Yitu Technology and Beijing-based Infervision are among start-ups racing to improve medical imaging analysis by using the same technology that powers facial recognition and autonomous driving. These examples, and others, are indicative of an intensifying competition between the US and China to dominate the life sciences, which is a significant growth industry of the future. In a forthcoming Commentary we shall describe this competition in more detail and explain the comparative advantages of the two nations.

 
Takeaway

It seems reasonable to suggest that over the next decade the gold standard solid tissue biopsy for diagnosing cancer will be replaced with cheap, rapid, non-invasive diagnostic tests, which are able to detect cancer early and thereby make a significant dent in the vast and escalating global burden of the disease.
view in full page
Gall Bladder Stone

All You Need To Know About Gallbladder Stones.

Gallstones, or gallbladder stones as they are commonly known as, are not really stones. These are pieces of solid material formed in the gallbladder.

The gallbladder is a pear-shaped, small organ that is located below your liver, on the right of your abdomen. The gallbladder has a digestive fluid known as bile that gets released in the small intestine.

Gallstones can be as small as sand grains or as large as golf balls. People can develop one or multiple gallstones at one point in time. It usually does not have any signs or symptoms to need treatment.

The problem arises when the gallstones block a bile duct, leading to a pain that must be treated without delay.

Read here : Types of Gallbladder Stones, The Causes of Gallbladder Stones, The Symptoms of Gallbladder Stones, The Ways to Prevent Gallbladder Stones :

 

view in full page
The Risk Factors For BPH / Enlarged-Prostate

What Are The Risk Factors For BPH / Enlarged-Prostate?

The Prostate is a muscular gland present in the male reproductive system. The prostate surrounds the urethra and is responsible for making most of the fluid in the semen.

Its muscular action helps in propelling the fluid and semen through the penis during sexual climax. However, most of the men after a particular age suffer from enlarged prostate or benign prostatic hyperplasia.

It is a condition where the prostate gland enlarges. This occurs when the prostate gland’s cells begin to multiply.

The additional cells cause to swell and squeeze the urethra. In addition to this, the cells also limit the flow of the urine. While BPH doesn’t increase the risk of cancer, many men might suffer from symptoms affecting the quality of life.

How Can BPH or Enlarged-Prostate affect One’s Body?

Most Common Risk Factors for Benign Prostatic Hyperplasia (BPH) or Enlarged-Prostate


view in full page

Is the digital transformation of MedTech companies a choice or a necessity?
 
Will 2019 see medical technology (MedTech) companies begin to digitally transform their strategies and business models to improve their commercial prospects?
 
We describe some of the changing market conditions that drive such transformations. We also briefly report the findings of two research papers on corporate digital transformations published in recent editions of the Harvard Business Review. These suggest that there are two “must haves” if company transformations are to be successful: leadership with the appropriate mindset and access to talented data scientists.
 
A bull market encouraging a business-as-usual mindset
 
MedTech is a large growing industrial sector (see below), which has benefitted significantly from the bull market in equities over the past decade but is one of the least equipped to prosper over the next decade in a radically changing healthcare ecosystem and a more uncertain global economy.

For the past decade equity markets have outperformed global economic growth and protected a conservative, production-orientated business-as-usual mindset in MedTech C-suites and boards of directors. This has made organizations either slow or reluctant to transform their strategies and business models, which define how they create and capture value. As we enter 2019 the protection that the MedTech industry enjoyed for years has been weakened by more uncertain markets, the tightening of monetary policy, slower global economic growth and disruptive technological change.

In this new and rapidly evolving environment MedTech markets are expected to continue growing but at a slower rate, operating margins are expected to decline as unit prices erode and companies will no longer be able to earn premium margins by business-as-usual strategies. Building a prosperous organization in a more uneven future is an important challenge facing MedTech leaders and will require a significant shift in their mindset and the talent they engage and develop.  
 

Medical technology

MedTech represents a significant sector of global healthcare, which has been relatively stable for decades. It has a market size of some US$430bn and has consistently experienced high margins and significant sales growth. For example, over the past decade the sector has grown at an annual compound growth rate of about 5%, with operating margins between 23% and 25%. The sector includes most medical devices, which prevent, diagnose and treat diseases. The most well-known include in vitro diagnostics, medical imaging equipment, dialysis machines, orthopaedic implants and pacemakers. The US and Western Europe are established centres for the sector, but trends suggest that China and India will grow in significance over the next decade. The sector is dominated by about 10 giant companies, which account for nearly 40% of the global market in sales revenues. All MedTech companies have significant R&D programs and the global spend on R&D is expected to grow from US$27bn in 2017 to US$34bn by 2022. An indication of how far developments in medical technology have come is robot-assisted surgery, which employs artificial intelligence (AI) for more precise and efficacious procedures. Robot-assisted surgery is expected to become a US$13bn global market by 2025. In the US the repeal of the medical device excise tax was not included in the recent tax reform. The industry believes the tax has a negative impact on innovation, and the rate of R&D spending by US MedTech companies is expected to fall by 0.5% over the next five years.
 
Resistance to change

For the past decade a substantial proportion of MedTech companies either have resisted or been slow to transform their strategies and business models despite increasing pressure from rapidly evolving technologies, changing reimbursement and regulatory environments and a chorus of Industry observers calling for MedTech companies to become less product-centric and more solutions orientated. This reluctance to change can be explained by a bull market in equities, which began in March 2009, outperformed economic growth, delivered some of the best risk-adjusted returns in modern market history and encouraged a conservative mindset among corporate leaders, who were reluctant to change and developed a “if it’s not broken why fix it” mindset.

Because the MedTech sector has been stable for years, established players have been able to compete successfully across the device spectrum, applying common business models and processes without much need for differentiation. MedTech’s strategy has been to market high priced sophisticated product offerings in a few wealthy regions of the world; mainly the US, Western Europe and Japan, which although representing only 13% of the world’s population account for more than 86% of the global MedTech market share (US: 42%, Europe: 33%, Japan: 11%). It seems reasonable to assume that in the future, as markets become more turbulent and uncertain, this undifferentiated strategy and business model will need to transform into ones that are far more distinctive and proprietary.

 
M&A has been MedTech’s principal response to market headwinds

MedTech’s principal adjustment to market headwinds over the past decade has been to increase its M&A activity rather than transform its strategies and business models. M&A’s increased companies scale and leverage, drove stronger financial performance, allowed companies to obtain a broader portfolio of product offerings and increased their international footprints. Some recent high-profile examples of M&A activity in the sector include Abbott’s acquisition of St. Jude’s Medical in January 2017, which led to Abbott holding some 20% of the US$40bn global cardiovascular market. Johnson & Johnson’s US$4bn buyout of Abbott Medical Optics Inc in February 2017, and the “mother of all M&A activity” was Becton Dickinson’s 2017 acquisition of C.R. Bard for US$24bn, which is expected to generate annual revenues of US$15bn.

According to a January 2018 McKinsey report between 2011 and 2016, 60% of the growth of the 30 largest MedTech companies was due to M&A’s, and between 2006 and 2016, only 20% of 54 pure-play publicly traded MedTech companies, “mostly relied on organic growth”. 
As MedTech leaders return to their desks in early 2019 after the worst December in stock market recent memory, they might begin to reflect on their past all-consuming M&A activity, which resulted in bigger but not necessarily better companies. After such a prolonged period of M&A’s, there is likely to be a period of portfolio optimization. Divestitures and spin-outs allow companies to capture additional value by improving capital efficiency, reducing operational complexity and reallocating capital to higher-growth businesses as the industry invests more in R&D to develop innovative product offerings that demonstrate value in an increasing volatile era and increasing price pressures. But divestitures are not necessarily changing strategies and business models, so MedTech’s vulnerabilities remain.
You might also like:

Who should lead MedTech?



The IoT and healthcare


 
Black December 2018 for equities
 
It is too early to say whether “Black December 2018” represents the end of the longest equity market bull-run in recent history, but it is worth noting that on Friday 21st December the Nasdaq composite index closed at 6,332.99, which was a drop of 21.9% from an all-time high of 8,109.69 on August 29th. The generally accepted definition of a bear market is a drop of at least 20% from a recent peak. World markets followed Wall Street. Japan’s Topix Index fell to its lowest level for 18 months and the pan European Stoxx 600 Index hit a two-year low. However, seasoned market observers suggest that although the average bull market tends to last for about 10 years, it does not simply die of old age, and the December 2018 market behaviour is consistent with a “maturing cycle” in which there is still room for stocks to grow. This note of optimism could encourage a continuation of a “business-as-usual” mindset in MedTech C-suites and boards of directors.
 
Anaemic economic growth forecasted

The outlook for the global economy in 2019 does not bring any comfort. In October 2018 the International Monetary Fund lowered its forecast for global economic growth for 2019, from 3.9% to 3.7%; citing rising trade protectionism and instability in emerging markets. In September 2018 the Organisation for Economic Cooperation and Development (OEDC) suggested that economic expansion may have peaked and projected global growth in 2019 to settle at 3.7%, “marginally below pre-crisis norms with downside risks intensifying.” The OECD also warned that the recovery since the 2008 recession had been slow and only possible with an exceptional degree of stimulus from central banks. And such support is ceasing.
 
Tightening of monetary policy

Global monetary policy is tightening as central banks retreat from their long-standing market support. After four years of quantitative easing (QE) the European Central Bank (ECB) has ended both its money printing program and its €2.6trn bond purchasing program. The Bank has done this just as the Eurozone growth is cooling and Europe seems to be destined for a slow relative decline, which raises concerns about the sustainability of the single currency area. Notwithstanding, some observers suggests that for the next few years capital can be reasonably safely deployed in the beer-drinking nations of northern Europe, but not in the wine-drinking countries of southern Europe; especially France and Italy, two countries at the centre of the Eurozone’s current challenges. France’s budget deficit exceeds that permitted by the EU and in the latter part of 2018 the nation’s anti-government gilets jaunes demonstrators led to President Macron promising more welfare spending than the nation can afford. This could suggest that France is on the cusp of an Italian-style debt crisis. Although these economic trends have been telegraphed for some time, after nearly a decade of a bull market and low interest rates, there seems to be some complacency in the equity markets about the risks from higher rates and elevated corporate debt. But this sentiment is expected to change in 2019.
 
Transformation is no longer a choice

This more uncertain global economic outlook, heightened US-China tensions, tighter monetary policy and a maturing global business cycle together with significantly changed and evolving healthcare ecosystems suggest that transformation of MedTech strategies and business models is no longer a choice but a necessity if they are to maintain and increase their market positions over the next decade.
 
A challenge for many MedTech companies is that they still work on dated and inappropriate systems or hierarchical processes, and too few leaders and board members fully comprehend the speed and potential impact of advanced digital technologies. Those organization with some appreciation of this are already looking to adjacent sectors for talent and knowhow that could help them evolve their strategies and business models. But such partnerships might not be as efficacious as expected. We explain why below.
 
Digital transformations

Let us turn now to consider digital transformations. Data scientists and machine learning engineers are critical to any digital transformation. One significant challenge for companies contemplating such change is talent shortage, which disproportionately affects companies not use to dealing with such talent. Data scientists are aware of their scarcity value and they tend not to work in IT silos of traditional hierarchical organizations but prefer working for giant tech companies in devolved networked teams, focusing on projects that interest them.

Companies that fail to engage talented data scientists will be at a disadvantage in any digital transformation. Mindful of such challenges some MedTech companies are beginning to partner with start-ups and smaller digitally orientated companies. But this is not necessarily an answer because talent shortage also affects start-ups. The answer lies in understanding how giant tech companies recruit talented individuals. Companies like Google and Facebook are more interested in “tech savvy” individuals and less interested in formal qualifications. They tend to catch such talent with attractive internships when they are seniors in high school and juniors at university. These companies understand digital technology and have seen enough interns that they can correlate their performance on coding tests and technical interviews with their raw ability and potential rather than relying on formal qualifications as a proxy for skill.
 
A new and more dynamic leadership mindsets

Future MedTech leaders will not only need to have a deep knowledge of disruptive digital technologies and AI systems, but will need to have the mindset of an “inclusive networked architect” with an ability to create and develop learning organizations around diverse technologies with dispersed talent. Traditional hierarchical production mindsets, which have benefitted from business-as-usual for the past decade are unlikely to be as effective in an environment which is experiencing the impact of a significant and rapid shift in technological innovation. Sensors, big data analytics, AI, real-world evidence (RWE), robotic and cognitive automation are converging with MedTech and encouraging companies to pivot from being product developers to solution providers. This requires leaders with mindsets that reward value instead of volume and are agile enough to meet increasing customer expectations, whether those customers are payers, providers or patients.

Without leaders with informed, forward-thinking mindsets, enthused about new models of organizational structures, culture and rewards that provide greater autonomy to talented teams and individuals, MedTech companies could remain at a disadvantage in competing with other technology companies for similar talent and expertise. Future MedTech leaders must understand how work is being redefined and the implications of this for talented individuals and devolved networked teams. It seems reasonable to assume that future MedTech leaders will be generalists: executives with more than one specialism with an ability to breakdown silos and bridge knowledge gaps across organizations and develop new models of organizational structure, culture, and rewards.
 
Successes and failures of digital transformations

We have focused on digital transformation of traditional companies as a means for them to prosper in radically changing market conditions. Although there has been a number of successful corporate digital transformations there has also been a significant number of failures. Understanding why some succeed and some fail is important.
 
Successful digital transformations

One notable successful digital transformation is Honeywell, a Fortune 100 diversified technology and manufacturing company, which overcame threats from market changes and disruptive digital technologies by transforming its strategies and business models. In 2016, Honeywell’s Process Solutions Division, a pioneer in automated control systems and services for the  oil, gas, chemical and mining industries, set up a new digital transformation unit to assist its customers to harness advantages from the Internet of Things (IoT) by increasing their connectivity to an ever-growing number of devices, sensors and people in order to improve the safety, reliability and efficiency of their operations.

The Unit’s primary focus is on outcomes, such as reducing costs and enabling faster and smarter business decisions. Honeywell’s IoT platform called Sentience, is considered a toolkit to collect, store and process data from connected assets, offering services to analyse these data and generate insights from them to enable data-based, value-added services. Unlike similar platforms developed by Siemens and General Electric (GE), Honeywell does not sell their platform as an app, but markets data-based services predicated on its platform, which enable its customers to optimize the performance of their connected assets and improve overall production efficiency. Other corporations that have set up similar transformation units to harness the benefits of disruptive technologies include Hitachi, Hewlett-Packard, SAP and UPS.

Failed digital transformations

Perhaps the biggest digital transformational failure is General Electric (GE). In 2011, the then CEO Jeff Immelt became an advocate for the company’s digital transformation. GE created and developed a significant portfolio of digital capabilities including a new platform for the IoTs, which collected and processed data used to enhance sales processes and supplier relationships. Immelt suggested that GE had become a “digital industrial company”. The company’s new digital technology reported outcomes of a number of indices, which over time improved and attracted a significant amount of positive press. Notwithstanding, activist investors were not so enamoured, GE’s stock price languished, Immelt was replaced and the company’s digital ambitions came to a grinding halt. Other notable corporates, which tried and failed to harness the commercial benefits from disruptive technologies include Lego, Nike, Procter & Gamble and Burberry.  

Digitally transformed companies outperform those that resist change

Notwithstanding, research findings published in the January 2017 edition of the Harvard Business Review suggest that digitally transformed companies outperform those that lag behind. Findings were derived from 344 US public companies drawn from manufacturing, consumer packaging, financial services and retail industries with median revenues of some US$3.4bn. Conclusions suggest that digitally transformed companies reported better gross margins, enhanced earnings and increased net income compared to similar companies, which lagged behind in digital change. “Digital technology changes the way an organization can create value: digital value creation stems from new, network-centric ways your business connects with partners and customers offering new business combinations,” say the authors of the study. Critically, the mindset of leaders is significantly linked to successful digital transitions. According to the study’s authors, “Our research indicates that these leaders approach the digital opportunity with a different strategic mindset and execute on the opportunity with a different operating model.”

Reasons for failing to transform

According to a paper published in the March 2018 edition of the Harvard Business Review there are four reasons why digital transformations fail.
  • Leaders’ narrow understanding of “digital”, which is not just technology but a blend of talented people, organizational culture, appropriate machines and effective business processes
  • Poor economic conditions and depressed demand for product offerings
  • Bad timing. It is important that your market sector is prepared for the changes your company is proposing
  • Paying insufficient attention to legacy business. “The allure of digital can become all-consuming, causing executives to pay too much attention to the new and not enough to the old”. 
 
Takeaways
 
Business history has shown that large and established companies, which fail to respond to disruptive technologies in a timely and appropriate fashion can fail and disappear. Notable examples include America Online, Barnes & Noble, Borders, Compaq, HMV, Kodak, Netscape, Nokia, Pan Am, Polaroid, Radio Shack, Tower Records, Toys R Us and Xerox. MedTech leaders might be mindful of Charles Darwin’s hypothesis, which he describes in his book, On the Origin of Species published in 1859. Darwin suggests that “in the struggle for survival, the fittest win out at the expense of their rivals because they succeed in adapting themselves best to their environment”. Such a statement would not be out of place in a modern boardroom. It suggests that all industrial sectors need to develop to keep abreast of innovations and evolving trends. The main difference is that Darwin’s natural selection processes take millions of years, while significant changes that effect commercial businesses can take a matter of months.
view in full page
Bridging the gap between medical science and policy to reduce the biggest 21st century healthcare burden

 
In November 2018 the Mayor on London Sadiq Khan, announced that junk food adverts will be banned on all London transport from February 2019 in an attempt to reduce the “ticking time bomb” of childhood obesity in the city.

London has one of the highest obesity rates in Europe with some 40% of 10 to 11-year olds either overweight or obese, with children from more deprived areas disproportionately affected. Obesity is a common and costly source of type-2 diabetes (T2DM), which is much more aggressive in youngsters and complications of the condition - blindness, amputations, heart disease and kidney failure - can present earlier. What is happening in London and the UK is replicated in varying degrees in cities and nations throughout the world: there is a global epidemic of obesity and T2DM, which together is often referred to as ‘diabesity’.
 
The “good” news is that at the same time Khan announced the advertising ban, the UK’s national news outlets were reporting the product of four decades of scientific research, which suggested that T2DM could be reversed by a liquid diet of 800-calories a day for three months.
 
Although this offers hope for millions of people, an unresolved challenge is whether this simple and cheap therapy will be implemented effectively to significantly dent the burden of diabesity, which arguably is the biggest healthcare challenge of the 21st century.
 
In this Commentary

We describe some of the research behind the news reports about the therapy to reverse T2DM. Although the scientists’ innovative solution of a low-calorie liquid diet has been adopted enthusiastically by some healthcare providers and organizations specifically set up to dent the burden of diabesity, it is questionable whether the gap between science and policy can be bridged. This, we suggest, is because the prevalence of diabesity is growing at a significantly faster rate than the effect of programs to prevent and reduce the condition.
 

Obesity and T2DM

Obesity, which is a significant risk of T2DM, is a complex, multifaced condition, with genetic, behavioural, socioeconomic and environmental origins. Diet and sedentary lifestyles may affect energy balance through complex hormonal and neurological pathways that influence satiety. Also, urbanization, the food environment and the marketing of processed foods are contributory factors to becoming overweight and obese. Notwithstanding, the main driver of weight gain is energy intake exceeding energy expenditure.
 
T2DM is a chronic, progressive metabolic disease, which until recently has been perceived as incurable. Although genetic predisposition partly determines the condition’s onset, being overweight and obese are significant risk factors. Generally accepted clinical guidelines to treat the condition is to reduce glycated haemoglobin (HbA1c) - blood sugar (glucose) - levels. The HbA1c test assesses your average level of blood sugar over the past two to three months. The normal range for HbA1c is 4% to 5.9%. In well-controlled diabetic patients HbA1c levels are less than 6.5% or 48mmol/moll. High levels of HbA1c mean that you are more likely to develop diabetes complications, such as serious problems with your heart, blood vessels, eyes, kidneys, and nerves. T2DM is treated primarily with drugs and generic lifestyle advice, but many patients still develop vascular complications and life expectancy remains up to six years shorter than in people without diabetes. 

 
Obesity

The Organisation for Economic Co-operation and Development’s (OEDC) 2017 Health at a Glance Report warned that obesity in the UK has increased by 92% in the past two decades. Two-thirds of the UK’s adult population are overweight and 27% have a body mass index (BMI) of 30 and above, which is the official definition of obesity. In 2017 there were 0.6m obesity-related hospital admissions in the UK, an 18% increase on the previous year. Each year, obesity cost NHS England in excess of US$10bn in treatment alone.
 
A 2018 World Health Organization (WHO) report suggests that obesity globally has almost tripled since 1975. In 2016, more than 1.9bn adults, 18 years and older, were overweight. Of these over 650m were obese. According to a 2018 WHO report on childhood obesity 41m children under the age of 5 were overweight or obese in 2016 and over 340m children and adolescents aged 5-19 were overweight or obese.
Bad diets
 
Diets in the UK, and in most wealthy advanced industrial economies, tend to have insufficient fruit and vegetables, fibre and oily fish and too much added sugar, salt and saturated fat. Rising consumption of processed food and sugary drinks are significant contributors to the global obesity epidemic. A typical 20-ounce soda contains 15 to 18 teaspoons of sugar and upwards of 240 calories. A 64-ounce cola drink could have up to 700 calories. People who consume such drinks do not feel as full as if they had eaten the same number of calories from solid food and therefore do not compensate by eating less. While healthy diets are challenging for most populations, low income levels and poor education are associated with less healthy diets.

You might also like:

Excess weight and type-2 diabetes linked to 16% of cancers in the UK

and

Weight loss surgery to treat T2DM

T2DM brief epidemiology

Almost 4.6m people in the UK and 30m Americans are living with diabetes:  90% of whom have T2DM. It is estimated that 12.3m people in the UK and some 70m in the US are considered pre-diabetic, which is when you have high blood glucose levels, but not high enough to be diagnosed with diabetes. The first WHO Global report on diabetes published in 2016 suggests that 422m adults (1 in 11) worldwide are living with the condition, which has quadrupled over the past three decades. The International Diabetes Federation (IDF) estimates that this figure will rise to 642m by 2040.  A further challenge is the undiagnosed. A December 2017 paper in Nature Reviews: Endocrinology suggests 46% of all cases of diabetes globally are undiagnosed and therefore at enhanced risk of complications. Until complications develop, most T2DM patients are managed within primary care, which constitutes a significant part of general practice activity. International data suggest that medical costs for people with diabetes are two to threefold greater than the average for people without diabetes.
 
T2DM treated but not cured

The most common therapy for T2DM patients who are overweight is metformin, which is usually prescribed when diet and exercise alone have not been enough to control your blood glucose levels. Metformin reduces the amount of sugar your liver releases into your blood and also makes your body respond better to insulin. Insulin is a hormone produced by your pancreas that allows your body to use sugar from carbohydrates in food that you eat for energy or to store glucose for future use. The hormone helps to keep your blood sugar levels from getting too high (hyperglycaemia) or too low (hypoglycaemia). Metformin does not cure T2DM and does not get rid of your glucose, but simply transfers your excess sugar from your blood to your liver. When your liver rejects your excess sugar, the medicine passes the glucose onto other organs: kidneys, nerves, eyes and heart. Much of your excess sugar gets turned into fat and hence you become overweight or obese. T2DM has long been understood to progress despite glucose-lowering therapy, with 50% of patients requiring insulin therapy within 10 years. This seemingly inexorable deterioration in control has been interpreted to mean that T2DM is treatable but not curable. Research briefly described in this Commentary suggests that T2DM can be beaten into ‘remission’, but it requires losing a lot of weight and keeping it off.
 
Reversing T2DM

Over the past decade a series of studies, led by Roy Taylor, Professor of Medicine and Metabolism at the University of Newcastle, England and colleagues from Glasgow University have explored the notion that losing weight could be the solution for controlling T2DM and lowering the risk of debilitating and costly complications.
 
Findings of a study in the December 2017 edition of the  Lancet, suggested that nearly 50% of people living with T2DM who had participated in a low-calorie liquid diet of about 800 calories a day for three to five months had lost weight and had reverted to a non-T2DM state. The study was comprised of 298 adults between 20 and 65 who had been diagnosed with T2DM within the past six years drawn from 49 primary care practices in Scotland and Tyneside in England. Half of the practices put their patients on the low-calorie diet, while the rest were in a control group and received the standard of care of anti-diabetic medicines to manage their blood glucose levels. About 46% of 149 individuals with T2DM who followed a weight loss regimen achieved ‘remission’, which the study defined as a HbA1c of less than 6.5% after one year. Only 4% of the control group managed to achieve ‘remission’. ‘Remission’ rather than ‘cure’ was used to describe the reversal of T2DM because if patients put weight back on, they may become diabetic again. Results improved according to the amount of weight lost: 86% of those who lost more than 33 pounds attained remission, while 57% of those who lost 22 to 33 pounds reached that goal.
 
Another paper by Taylor and his colleagues published in the October 2018 edition of Cell Metabolism, examined reasons why substantial weight loss - (15kg) in some patients - produces T2DM remission in which all signs and symptoms of the condition disappear, while in other patients it does not. Using detailed metabolic tests and specially developed MRI scans, Taylor observed that fat levels in the blood, pancreas and liver were abnormally high in people with T2DM. But after following an intensive weight loss regimen, all participants in the study were able to lower their fat levels. As fat decreased inside the liver and the pancreas, some participants also experienced improved functioning of their pancreatic beta cells, which store and release insulin, controls the level of sugar in their blood and facilitates glucose to pass into their cells as a source of energy. The likelihood of regaining normal glucose control depends on the ability of the beta cells to recover. But, losing less than 1gm of fat from your pancreas through diet can re-start your normal production of insulin and thereby reverse T2DM.
 
“The good news for people with T2DM is that our work shows that you are likely to be able to reverse T2DM by moving that all important tiny amount of fat out of your pancreas. At present, this can only be done through substantial weight loss,” says Taylor.

While a significant proportion of participants in Taylor’s study responded to the weight loss program and achieved T2DM remission, others did not. To better understand this, researchers focused on 29 participants who achieved remission after dieting and 16 who dieted but continued to have T2DM. Taylor and his colleagues observed that people who were unable to restart normal insulin production had lived with T2DM for a longer time than those that could. Individuals who had lived with T2DM for an average of 3.8 years could not correct their condition through weight loss, while those who had the condition for an average of 2.7 years were able to regain normal blood sugar control.

“Many [patients] have described to me how embarking on the low-calorie diet has been the only option to prevent what they thought - or had been told - was an inevitable decline into further medication and further ill health because of their diabetes. By studying the underlying mechanisms, we have been able to demonstrate the simplicity of T2DM and show that it is a potentially reversible condition. but commencing successful major weight loss should be started as early as possible,” says Taylor.
 
Click on Newcastle University to find out more information about reversing T2DM by weight loss.
 
Bridging the gap between science and policy

Taylor and his colleagues describe their research findings as “very exciting” because “they could revolutionise the way T2DM is treated”, but caution that a series of management issues will need to be overcome before their therapy becomes common practice. This includes, (i) familiarizing primary care doctors and T2DM patients with the treatment regimen, (ii) establishing a generally accepted standard for what actually constitutes “remission”. Taylor and colleagues recommend “remission” to be when a patient has not taken diabetes medicines for at least two months and then has two consecutive HbA1c levels, taken two months apart, which are less than 6.5%. Researchers also recommend that data on T2DM reversal rates should be routinely collected, stored, analysed and reported.

Notwithstanding, the ‘elephant in the room’ is the vast extent of diabesity, the eye-watering rate at which it is growing and the general ineffectiveness of policy makers and prevent programs to dent the burden. Research findings presented at the 2018 European Congress on Obesity in Vienna emphasize the magnitude of the problem. If current trends continue, almost a quarter (22%) of the world’s population will be obese by 2045 (up from 14% in 2017), and 12% will have T2DM (up from 9% in 2017). Findings also suggest that in order to prevent the prevalence of T2DM from going above 10% by 2045, global obesity levels must be reduced by 25%. The problem is no less grave at the national level. For example, in the UK, if current trends continue obesity will rise from 32% today to 48% in 2045, while diabetes levels will rise from 10.2% to 12.6%, a 28% rise. This is unsustainable. Here’s the challenge for policy makers.

To stabilise UK diabetes rates over the next 25 years at 10%, which is high and extremely costly, obesity prevalence must fall from 32% to 24%. Similarly, in the US, if current trends continue over the next 25 years, then to keep diabetes rates stable over the same period, obesity in the US would have to be reduced by 10%: from 38% today to 28%.
 
Takeaways

Taylor and his colleagues have delivered a simple and cheap solution to one of the biggest burdens of the 21st century. But unless there is effective strategy to implement this solution the four decades of research undertaken by Taylor and his colleagues will be wasted. Previous Commentaries have described the vast and crippling burden of diabesity and the failure of well-funded programs to make any significant dent in this vast and escalating burden, which is out of control. We have suggested, this is partly because, at the operational level, programs have tended to be predicated upon inappropriate, old fashioned, 20th century organizational methods and technology and focused on “activities” rather than “outcomes”. At a policy level, government agencies have systematically failed to slow the rise of processed food becoming the “new tobacco.  Most UK endeavours to reduce the burden of diabesity are like putting up an umbrella to fend off a tsunami. This must change if we are to harness and effectively deploy the research findings of Professor Taylor et al.
view in full page
  • Experienced Western healthcare professionals have little knowledge of WeDoctor a Chinese internet healthcare start-up positioned to have a significant impact on global healthcare systems over the next decade
  • Founded in 2010 and backed by Tencent, a US$0.5trn Chinese conglomerate, WeDoctor has grown rapidly to become an influential US$6bn enterprise
  • WeDoctor bundles services AI and big data strategies into smart devices to help unclog China’s fragmented and complex healthcare system and increases citizens’ access to affordable quality healthcare
  • WeDoctor has expanded its franchise outside of China and has global ambitions to become the “Amazon of healthcare
  • Is WeDoctor an exemplar for Western healthcare providers?
 
WeDoctor’s impact on global healthcare

The speed and scoop of technological change is forcing traditional healthcare providers to move beyond the comfort of their production models, embrace services and develop smart devices, which support customer-centric, value-based, data driven strategies. To illustrate this shift, we describe a Chinese internet healthcare start-up WeDoctor, which is having an impact on re-engineering China’s overly bureaucratic, fragmented and complex healthcare system and is positioned to influence the delivery of value-based healthcare services globally in the next decade.
 
In this Commentary

This Commentary describes WeDoctor and some of its recent activities to expand its influence and market share. Three things of note:

  • The partnerships that WeDoctor has developed with payers and providers, which are different to conventional transaction-based contracts
  • WeDoctor’s pragmatic approach to evolving technologies, which differentiates it from Western technology companies entering healthcare markets
  • WeDoctor might be considered as an exemplar and its strategy copied by Western companies. Because most giant Western technology companies are banned in China, local firms have stopped copying Western counterparts and innovate. This has resulted in many Chinese apps and services being better than their Western rivals. For example, Huawei’s mobiles outperform Apple’s, and China is ahead on 5G, mobile money and artificial intelligence. In 2016 the US technology publication Wired ran a cover story entitled: “It’s Time to Copy China”.
Smart Clinics

Imagine going to your primary care physician and, within a 15-minute consultation, receiving up to eleven tests, which include analysing your blood and urine, taking your blood pressure and measuring the electrical activity of your heart; and all the tests being delivered by a small portable all-in-one diagnostic device weighing just 5 kilos (11Ibs) and situated on the table of your doctor’s consulting room.

Imagine further that your test results are returned in minutes rather than days or even weeks and uploaded to your cloud-based electronic medical record to be reviewed in real time by your doctor. Simultaneously, your data are anonymously merged with similar information collected from millions of other patients and stored in a cloud file embedded with AI, in the forms of machine learning and cognitive computing, which complement and enhance the capabilities of your doctor. Your physician plays a key role in interpreting your test results and providing you with a diagnosis and treatment options as well as giving you an essential human touch of reassurance and guidance. Notwithstanding, as soon as you leave your doctor’s office, your mobile phone will suggest smart ways to monitor and manage your condition remotely. Information about your condition will appear on your social media feeds, you will also receive prompts for treatments, alerts about health supplements and suggestions about appropriate insurance policies. Currently, no amount of money can buy such a service in advanced wealthy Western economies, but it is a lead device of WeDoctor, which is available in rural China and in other emerging countries. According to Frost and Sullivana consultancy, the China market alone for remote diagnostics is currently estimated to be US$2bn and projected to grow to US$28bn in 10 years. WeDoctor’s  near-term goal is to capture a significant share of this market and help re-engineer China’s healthcare system by nudging individuals with the right piece of information at the time to maintain their health. This makes the device valuable to patients, healthcare providers and payers.

 
Reverse innovation
 
It seems reasonable to assume that, in addition to being useful in China and other emerging countries, WeDoctor’s all-in-one diagnostic device is well positioned to help enhance primary care practice in developed Western nations by a process of ‘reverse innovation’. This refers to a strategy where a product offering, which is specifically developed for emerging countries is subsequently successfully marketed in developed wealthy nations. It is particularly relevant to healthcare systems, which are universally challenged to deliver high quality outcomes with increasingly scarce resources. The strategy was formalized in a paper entitled, ‘How GE is Disrupting Itself’, which was published in the October 2009 edition of the Harvard Business Review (HBR), and subsequently expanded into a book published in 2018 entitled, ‘Reverse Innovation in Healthcare: How to make value-based delivery work’.
 
In the early 2000s, General Electric (GE) took an affordable, high quality portable ultrasound device, which it had developed for the Chinese market and successfully marketed it in the US and elsewhere. GE found that ‘affordability’ and ‘portability’ were universally valued healthcare factors. Jeffrey Immelt, then chairman and CEO of GE and one of the authors of the 2009 HBR paper, challenged other multinationals, “to see innovation opportunities in emerging markets in a new light. Reverse innovation was more widespread than Immelt first thought and over the past decade the strategy has become a significant part in the armoury of many multinational corporations. Although the strategy is relevant for value-based healthcare,it is rarely practiced by Western healthcare providers.
 
The starting point for reverse innovation healthcare strategies is emerging markets where the rapid growth in the demand for quality healthcare outstrips the development of resources and infrastructure. This creates significant opportunities for Western companies with smart solutions to common healthcare challenges. Similar to GE’s portable ultrasound device, WeDoctor’s smart all-in-one diagnostic device, in time, could be marketed in developed regions of the world where healthcare systems are struggling to improve patient outcomes while reducing costs.
 
WeDoctor’s pragmatism

WeDoctor, founded by Liao Jieyuan an AI specialist, is backed by Tencentwhich is one of the world’s largest technology and internet companies with a market cap of US$0.5trn and a mission to enhance the quality of life through the development and global distribution of emerging technologies. WeDoctor has a market cap of US$6bn, an established network in China of some 240,000 doctors, 2,700 large premier hospitals, over 15,000 pharmacies in 30 of China’s 34 provinces and about 160m platform users and joins a growing contingent of technology companies with a mission to change the healthcare industry, which to-date has resisted online disruption.
 
Notwithstanding, there is a significant difference between giant Western technology companies who have entered healthcare markets and WeDoctor. While the former have tended to invest heavily in aspirational projects such as unravelling the medical mysteries of anti-ageing, and AI systems to replace clinicians, WeDoctor has been more pragmatic and focused on making money by unclogging bottlenecks in the Chinese US$1trn healthcare market. Although Liao is an AI expert and WeDoctor is a significant user of AI, Liao believes, “AI won’t replace doctors, but will become an important tool for doctors to help improve their efficiency and accuracy”. WeDoctor has a practical mission: to enhance access to quality medical resources, improve patient outcomes and reduce costs. Indeed, Liao founded WeDoctor simply to help people book physician appointments, which is challenging in China. Chinese primary care practices are underused due to the poor distribution of resources, a lack of reputable practitioners and the nation’s relatively low number of doctors per capita. Further, waiting times to see a hospital specialist are long and patients reportedly have to pay significant amounts of money to middlemen to secure appointments.
 
AI healthcare systems are more challenged in the West than in China
 
In 2017, the Chinese central government released a plan to become the world leader in AI by 2030, aiming to surpass its rivals technologically and build a domestic industry worth almost $150 bn. WeDoctor and other Chinese healthcare providers are mindful that AI is a transformative technology for healthcare partly because of its ability to recognise patterns in vast amounts of data and to detect and quantify biomarkers in non-solid biological materials. Jamie Susskind, in his book Future Politicspublished in 2018, suggests that doctors consulting both medical and legal big data banks in support of diagnoses and treatments, will become as commonplace as  consulting standard images such as MRIs or X-rays. And if such data banks are not consulted it will be considered negligent.  
 
WeDoctor’s AI systems hold out the prospect of delivering rapid diagnoses, efficient triage, enhanced monitoring of diseases, improvements in personalized care and making medicine safer. Notwithstanding, a limiting factor in the use of AI systems in healthcare generally is neither investment nor the technology, but the ability to amass vast amounts of reliable personal and genomic data. This is a bigger challenge in the West than in China. More robust privacy legislation, higher levels of security and broader-based ethical concerns in the West are substantial obstacles. A significant advantage of WeDoctor is the freedom in China to collect, store, analyse and use patient, personal and genomic data on an unparalleled scale. China has yet to establish laws to protect such personal information and is systematically building health profiles on its 1.4bn citizens, which, together with Beijing’s commitment to AI, will provide scientists in China a significant advantage to lead and dominate life sciences over the next decade.
WeDoctor is one of several similar start-ups
 
WeDoctor is just one of several recent Chinese online start-ups employing evolving technologies to improve China’s healthcare system. Another is Good Doctor, which is an offshoot of the Ping An Insurance Group, a financial giant with a US$181bn market cap, annual revenues of US$142b and 343,000 employees. Both start-ups compete to build smart clinics in rural China.
You might also like:

Can Western companies engage with and benefit from China?

WeDoctor endeavours to extend its franchise

In addition to its smart diagnostic device, WeDoctor has leveraged Tencent’s substantial expertise and resources in mobile, AI and cloud-based technology to develop a significant customer-focused retail prowess and is rapidly developing a range of services for healthcare providers and manufacturers of medical devices. This positions the company well to have a significant near-term impact on Asia’s healthcare systems. In 2018 alone, WeDoctor has strengthened and extended its franchise by entering into a number of partnerships with a range of healthcare stakeholders, which include insurance companies, specialist in the procurement and distribution of medical devises and also investment companies interested in improving the physical infrastructure of southeast Asian healthcare systems. We describe some of these partnerships, which enable WeDoctor to consolidate and expand its market position both in China and internationally and suggest that Western healthcare providers should be considering similar partnerships to help them make the product to service shift.
 
WeDoctor and the AIA insurance group

In May 2018, WeDoctor formed a strategic alliance with the AIA Group, which is the largest public listed pan-Asian life insurance group with customers in China and across the Asia-Pacific region. WeDoctor and AIA are aligned in their ambition to partner with consumers in China and across southeast Asia to provide innovative quality healthcare and wellness offerings and financial protection solutions. The partnership provides WeDoctor with preferred access to AIA’s customer base and thereby strengthens and enlarges its networks and strategies to deliver affordable, digitally-enabled personalised healthcare offerings. AIA becomes WeDoctor’s preferred provider of life and health insurance solutions and gains access to its 160m registered users. According to Liao the partnership, “leverages AIA’s long history and extensive operations across the Asia-Pacific region . . . and is crucial to meeting the diversified life and health insurance requirements of our growing user base as we look to anticipate users’ needs, through our platform’s expanding functionality and our mission to transform healthcare through technology. This partnership not only helps us to cement our position as the premier technology-enabled healthcare solutions platform in China but also supports us as we expand our international presence in the years to come”.  
 
WeDoctor and China’s IVF market

Also, in May 2018, WeDoctor made a strategic investment in Reproductive Healthcare,a new in-vitro fertilisation (IVF) group, which was formed by a merger between two of Hong Kong’s largest and most reputable IVF practices. This was WeDoctor’s first investment outside of Mainland China and represents a significant milestone for the implementation of its international strategy. The new company provides a comprehensive range of IVF services, which include intra-uterine insemination, frozen-thawed embryo transfer and egg freezing services for China and the Asian region. The new company’s established frozen embryo services benefit from findings of a paper published in the January 2018 edition of the New England Journal of Medicine, which suggest that pregnancy and live birth rates are similar among women who use fresh or frozen embryos.
 
WeDoctor and its expanded international IVF market
 
In August 2018 WeDoctor, entered into an agreement with the Mason Group and Aldworth Management to acquire an 89.9% stake in Genea, Australia's leading provider of integrated advanced assisted reproductive technology (ART) services. Headquartered in Sydney, Genea has over 400 employees and is a leading international fertility group with a 30-year track record and a significant presence in New Zealand and Thailand as well as Australia. The company offers a comprehensive range of ART services, including IVF, egg and embryo freezing, genetic testing, sperm banking, day surgeries and pathology. Genea has developed proprietary technologies, including culture media and embryo transfer catheters, which are used in more than 600 clinics across 60 countries and is the only ART platform, with both services and technology, in the industry worldwide. The agreement strengthens both WeDoctor’s international strategy and its ability to increase its share of China’s US$2bn and fast-growing IVF market. WeDoctor also is targeting a bigger share of the outbound Chinese IVF medical tourism market, which in 2017, grew approximately 40% year-over-year to approximately US$151m. According to Grand View Research, the global IVF market in 2017 was valued at about US$15bn and is expected to grow at a CAGR of around 10%.
 
WeDoctor is China's first smart medical supply chain solutions and procurement company
 
In July 2018, WeDoctor entered into a joint venture (JV) with IDS Medical Systems Group (idsMED Group), to form idsMED WeDoctor China Ltd. This is China's first smart medical supply chain solutions and procurement company and is positioned to transform China’s fragmented, multi-layered and relationship-driven medical device distribution systems.
 
idsMED is a leading Asian medical supply chain solutions company specialising in the distribution of medical devices and consumables, clinical education and hospital design and planning. It represents over 200 global MedTech companies and has extensive Asia Pacific distribution networks with access to over 10,000 healthcare institutions. The company has 1,600 employees, including 700 experienced field sales, product and clinical specialists and 300 professional bio-medical engineers providing installation and maintenance services.
 
The JV, owned 51% by WeDoctor and 49% by idsMED Group leverages the respective companies’ strengths, innovative resources and networks to procure medical devices and services centrally by connecting global manufacturers directly to China’s hospitals and healthcare providers. The JV will further enhance WeDoctor’s value proposition by managing and optimizing China’s entire medical supply chain, which until now has been fragmented, overly bureaucratic and complicated. In addition, idsMED WeDoctor will set up medical education and training academies throughout China to deliver and promote medical devices and clinical education as well as accredited medical training courses for doctors and nurses.
 
WeDoctor & Fullerton
 
In September 2018 WeDoctor entered into a strategic partnership with Fullerton Health a Singapore-headquartered healthcare service provider. The alliance is, “In line with WeDoctor’s international growth strategy and will extend our reach and facilitate our development in Asia,” said Jeff Chen, WeDoctor’s Chief Strategy Officer. The JV provides WeDoctor access to Fullerton Health’s 500 healthcare facilities and its network of over 8,000 healthcare providers across eight Asian pacific markets. Fullerton Health benefits from WeDoctor’s footprint in China and broadens its patients’ access to online healthcare consultations. In the near term, both companies aim to broaden their reach in the corporate healthcare service market by opening onsite medical centres for businesses across China. In addition, the partnership plans to create about 100 primary care and specialist outpatient facilities.
 
Takeaways

Healthcare has become digital and global and long ago, the geo-political axis of the world has moved East. To remain competitive, Western healthcare providers must increase their knowledge and understanding of initiatives in China and southeast Asia, be prepared to transform their strategies and business models and engage in partnerships with a range of healthcare stakeholders, complementary enterprises and start-ups in emerging nations.
 
Two of China’s largest healthcare challenges are the uneven distribution of its services and its vast and escalating costs. The nation has an underserved primary care sector and the most qualified and experienced doctors are concentrated in a few premier mega-city hospitals, which account for 8% of the total number of medical centres but handle 50% of the nation’s outpatient visits. These challenges are not unique to China but experienced by healthcare systems throughout the world.

WeDoctor is an exemplar of how such universal healthcare challenges might be improved by a combination of evolving smart technologies and strategic partnerships with a range of healthcare stakeholders. As MedTech companies continue to transform their business models to increase customer-centricity, the types of partners they need to engage will only expand. In a rapidly moving market, keeping abreast of these potential collaborators is critical.

Another takeaway is that WeDoctor does not use AI and big data technologies to resolve the mysteries of medicine, but to increase access to healthcare, improve diagnoses, enhance patient outcomes and lower costs. The company also is increasing the effectiveness and efficiency of healthcare providers by simplifying and centralizing procurement processes of medical devices and pharmaceuticals.
 
Once WeDoctor has helped to improve China’s healthcare infrastructure, the nation would have amassed the world’s largest personal, medical and genomic data base of its citizens. WeDoctor will then be well positioned to turn its formidable AI prowess to accelerating R&D in lifesciences, improving the accuracy of early diagnoses, enhancing the monitoring of devastating life-threatening diseases and improving personalized care.
 
WeDoctor is an exemplar for Western MedTech companies.
view in full page
  • Life-changing eating disorders are increasing, and their causes are assumed to be more about emotional and psychological challenges than food
  • For 60 years the global fashion industry has encouraged teenage girls and young women to emulate an unrealistic ‘thin ideal’ body image
  • As social media became the principal means for young people to communicate and receive information, so billions of fashion advertising dollars migrated to social media to propagate the ‘thin ideal’  
  • Although nearly a third of the world’s population participate in social media and a significant proportion are “extreme” daily users, the mechanisms of social media and their effect on young peoples’ mental health are not fully understood
  • Notwithstanding, there is a growing body of evidence suggesting that the more time people spend on social media the greater is their likelihood of developing mental ill-health and eating disorder

Is social media an accelerant for life-threatening eating disorders?
 
A May 2018 Brooking’s Institute research paper suggested that social media has become a significant mechanism for spreading and reinforcing misinformation - fake news - which can influence and disrupt democratic political processes and thereby are a threat to 21st century democracy.  Similarly, we contend that misinformation about body images, diets, lifestyles and beauty distributed on social media could be an accelerant for teenage and adolescent girls to engage in life-changing disordered patterns of eating to achieve an unrealistic body image.
 
A September 2018 report by Sky News UK suggested that entities, which actually promote eating disorders and unhealthy and dangerous attitudes towards food and body image were not picked-up by Instagram, an online photo-sharing app with 1bn active monthly users. Daniel Magson, vice chair of Anorexia & Bulimia Care, a charity, suggested that Instagram is "not a safe space” because it hosts communities, which promote, “the best ways to injure or self-harm,” and recommend “the best places to dine with private toilets for afterwards”.
 
A 2017 survey of 1,500 14 to 24 year-olds in the UK carried out by the Royal Society for Public Health (RSPH) rated Instagram the worst social media site for young people’s mental health, and suggested that, "social media may be fuelling a mental health crisis" in young people. Shirley Cramer, the CEO of the RSPH, said: "It's interesting to see Instagram and Snapchat (another photo sharing app with 191m active daily users) ranking as the worst for mental health and wellbeing; both platforms are very image-focused.Instagram is addressing the issue and recently announced that it is doubling the number of people working across safety and security teams for Facebook and Instagram to 20,000 by the end of 2018, which includes a team of 7,500 content reviewers (Facebook acquired Instagram in 2012 for US$1bn, 18 months after its launch).
 
In this Commentary

This Commentary:
1. Describes common eating disorders
2. Provides a brief analysis of the incidence, distribution and determinants of eating disorders
3. Explains the genesis of the ‘thin ideal’ and how it has become an unrealistic body image, which the fashion industry encourages young people to emulate
4. Provides a short historical description of Western social media and notes that although it has rapidly become a global phenomenon the mechanisms that drive it are not widely understood
5. Explains some of the hidden mechanisms how social media may affect a user’s perceptions of themselves and influence their behaviour
6. Provides a brief selective summary of the growing body of research, which reports “extreme” use of social media by teenager girls and young women and the rise in incidence rates of mental ill-health and eating disorders in this cohort
7. Describes how the fashion industry was quick to realise the significance of social media as a cost-effective means to influence the opinions and purchasing behaviour of teenage girls and young women and shifted billions of marketing dollars away from traditional content providers to social media platforms to promote the ‘thin ideal’
8. Suggests that longitudinal studies are necessary in order to increase our understanding of the association between multifaceted eating disorders and social media
9. Concludes that social media was a communications revolution that promised to increase interactions and flows of information and knowhow between millions of dispersed people and lower cultural, religious and regional divides. On one level it achieved this. But as social media developed and was better understood, so it was realized that social media could also be used as an agent for misinformation – fake news - and to encourage discordant behaviour. And therefore, social media could become an accelerant for mental ill health and life-threatening eating disorders.
 
1
Eating disorders
 
Almost everyone worries about their weight occasionally. Abnormal eating disorders are when individuals take such concerns to extremes and obsessively focus on their weight, body shape and food and this can threaten their health, emotions and their ability to function in important areas of life. The most common eating disorders are: (i) anorexia nervosa, which is a serious, potentially life-threatening illness where individuals often equate thinness with self-worth; think they are fat even when they are dangerously thin, and restrict eating to the point of starvation, which leads to extreme weight loss and a low body mass index (BMI) 2, (a BMI of between 18.5 kg/m2 and 24.9 kg/m2 is considered a healthy range for young women); (ii) bulimia nervosa: is when individuals eat excessive amounts of food, then purge, which may include self-induced vomiting, abuse of laxatives, diuretics, diet pills, appetite suppressants or other stimulants; and (iii) binge eating, which is when individuals regularly eat too much food (binge) and feel a lack of control over their eating, but they do not purge. Two further eating disorders, which are growing in significance, but as yet, are not officially recognised as medical conditions are orthorexia and drunkorexia. The former is when individuals want to live healthier lives by eating well, but then get so obsessed with “healthy” food that they become unwell and socially isolated. The latter is a condition where individuals use extreme weight control methods as a means to compensate for planned binge drinking.

 
2
Epistemology

Before 2000 the overall incidence rates of eating disorders were relatively stable for a few decades. But following the introduction and spread of social media there was a hike in the incidence rates, especially among Western teenage girls. However, it is not altogether clear whether this is due to an increase in eating disorders or the result of more effective diagnoses and a greater awareness of the conditions.

The US National Eating Disorder Association, estimates that there are some 70m people worldwide with eating disorders and about 30m in the US. A 2017 US National Institutes of Health report suggests that between 2001 and 2003 the lifetime prevalence of anorexia nervosa in American adults was 0.6%, and 3-times higher among females (0.9%) than males (0.3%). The prevalence of bulimia nervosa was 0.3%; 5-times higher among females (0.5%) than males (0.1%), and the overall prevalence of binge eating was 1.2% and twice as high among females (1.6%) than males (0.8%).

A 2013 report from the UK’s Joint Commissioning Panel for Mental Health suggested that there are over 1.6m people in Britain with eating disorders, but this is likely to be an underestimate since a significant proportion of people with such disorders do not seek help. The UK’s Department of Health suggests that a more likely figure is about 4m. Information provided by The Priory, a private hospital group specialising in mental health, suggests that 1% of all women aged between 15 and 30 in the UK are affected with anorexia nervosa, 40% of people with eating disorders suffer from bulimia, and the people most affected with eating disorders are females between 11 and 25.
 
The exact causes of eating disorders are not well established, but a significant body of opinion suggests that they are not about food, but more to do with unhealthy and sometimes life-threatening ways to cope with emotional problems. In parallel with these psychological explanations there is research to suggest that eating disorders have either genetic or biological causes associated with 2-way communications between the gut and the brain through both nerve connections and biochemical signals. A recurring theme shared by people with all types of eating disorders is an expressed or implied dissatisfaction with their body image and their aspiration to achieve the “thin ideal”, which is a concept that has been propagated by the fashion industry for the past 60 years.

 

3
The thin ideal
 
Over time what has generally been accepted as a beautiful body has changed. In recent history, the biggest change occurred in the I960s when thinness and the absence of a figure became a body image propagated by the global fashion industry as an ideal for teenage girls and young women to emulate. This was personified by Lesley Lawson, an English model known as “Twiggy”, who had a slim androgynous look and a body mass index (BMI) of 15 kg/m2, (a BMI under 18.5 kg/m2 is considered malnourished). Twiggy replaced the notion of a beautiful woman as full-figured and gave birth to the “thin ideal”.  In the 1970s diet pills and amphetamines became widely used to suppress appetite in order to cultivate the thin ideal. The 1980s was the decade of the supermodel when the thin ideal became even thinner, and about the same time anorexia nervosa began to receive mainstream medical attention. Notwithstanding, in the 1990s the ideal body for young women became an extremely thin look with big breasts, and by the end of the 90s the fashion industry propagated a “heroin chic” look, which was characterised by a skeletal body, emaciated features, androgyny, red lips and dark circles under the eyes. Thus, for the past six decades the body shape of the “most admired” models, which fashion advertising encouraged young girls to emulate, has remained consistently slimmer than that of the average western woman. However, at the end of the 1960s there was a “hippie” era when, for a relatively short period, a more full-figured look returned, and more recently there have been movements towards a more realistic standard of beauty. Notwithstanding, the thin ideal persists and continues to affect teenage girls and young women who emulate this unrealistic body image and become preoccupied with their weight and size, which some control by various unhealthy means and this results in anxiety, negative body image and dieting to below their natural body weight.
 
4
Social media

Over the past decade, as social media has become the primary means by which young people communicate, share and receive information, so the fashion industry has increasingly used social media to propagate the thin ideal. Social media is comprised of a collective of websites and applications, which enable users to create and distribute content and to interact and collaborate with friendship groups. Social media’s power and influence is significantly related to the number of users, its penetration and the regularity of usage. By the end of 2019 it is projected that there will be around 2.77bn social media users worldwide and 3bn by 2021, which equates to about a third of the world’s population. Social media’s global penetration is increasing: in 2017, 71% of internet users were social media users. Recent studies - see section 6 below - suggest that there is an increasing proportion of “extreme users” who spend up to 8 hours a day on social media.
 

A brief history of social media

Here we provide a brief and partial history of Western social media platforms. Social media started in 1997 with Six Degrees, which was an online platform that enabled users to upload their profile and share it with friends. MySpace followed in 2003 and was acquired 2 years later by News Corporation for US$0.58bn. At its peak in 2008, MySpace was the world’s most visited social media site with 76m unique monthly visitors. LinkedIn, a business and employment networking platform was also founded in 2003 and today has some 0.5bn registered members in 200 countries, 106m of whom are active. Facebook launched in 2004, has become the world’s most widely used social media platform with some 2.23bn active monthly users. 76% of Facebook users are female. In 2012 it was estimated that 83m Facebook accounts were bogus, (for relevance see discussion on ‘social bots’ in section 5 below). YouTube founded in 2005, is a global video sharing platform featuring a wide variety of user generated and corporate media content and is now the world’s 3rd most visited site after Google, the world’s most used search engine. Every minute some 400 hours of video are uploaded onto YouTube, each day people watch 1bn hours of videos, more than half are watched on a mobile device and the average viewing session lasts 40 minutes. Reddit, founded in 2005, is a social media forum where content is socially curated and promoted by users through voting. It was acquired by Condé Nast in 2006 for an undisclosed amount between US$10 and US$20m but is now independent. As of February 2018, Reddit had 542m active monthly visitors. Twitter, an online news and social networking site launched in 2006 has some 328m monthly active users. Tumblr, founded in 2007 and acquired in 2013 by Yahoo! for US$1.1bn, is a microblogging and social networking website. As of 2017, Tumblr had almost 738m unique visitors globally and generated over 148bn posts. Instagram a photo and video-sharing social media network was founded in 2010, acquired by Facebook in 2017 for US$1bn, and has 1bn monthly active users. Snapchat, a multimedia messaging app launched in 2011 has some 188m active daily users sharing over 400m photographs every day. Facebook, Instagram and Snapchat are the most popular social media sites.
 
5
Hidden mechanisms that drive social media

Human biases
Social media encourages users to constantly compare and judge their bodies with that of the thin ideal of “friends” and “celebrities” they follow. Cyberbullies and body shamers, can relatively easily use social media to infiltrate an individual’s private space and daily life. They may then constantly post information, which can affect that individual feeling inadequate about themselves and their body image. Social media postings can be 'shared', 're-tweeted', 'liked', copied and end up 'going viral'.  Where a posting is defamatory, the damage done can be significant.  Cyberbullying is a form of wilful and repeated harm, which is inflicted through the use of social media and is often directed at a user’s body image and appearance. Shamers are people who use social media to publicly mock or criticize someone for a particular aspect of their appearance or behaviour and makes them feel either humiliated or ashamed.

Females under 25, are predisposed to perceive what they see on social media as reality despite the fact that many images could have been altered and information might be fake. Social media differs from traditional mediabecause it is a distributor of content and not a publisher. This means that social media platforms are not regulated in the same way as traditional media outlets, which suggests that misinformation can be spread unimpeded. Individuals tend to pay more attention to information that supports their previously held beliefs and are more prone to share such information even if it is false. Further, individuals have different tolerance levels towards the ambiguity of information and have an innate desire to minimize uncertainty. Social media provides a means to do this. Users can use the “like”, sharing and friendship functions to give precedence to information that accords with users’ perceptions of self, body image and beauty etc. This tends to narrow the scope of information, which individuals receive, and therefore users of social media are often unaware of competing perspectives. Thus, social media can have the effect of segregating people into virtual communities of likeminded individuals, which makes them potential targets of specific marketing endeavours seeking to influence their behaviour.

Social media and Al
The behaviour of social media users is also influenced by deep learning algorithms. Originally social media used artificial intelligence (AI) to forward information chronologically. Now algorithms are taught to identify information, which already has significant engagement among friendship groups and then to distribute that information to millions of like-minded users, who, in turn share it with their friendship groups, which then is identified again by algorithms and distributed even further and so on and so forth. This creates a significant ‘cycle of influence’, which can be used to effectively spread messages and body images to people predisposed to such information and is a gift to marketers who can use such mechanisms to influence peoples’ beliefs and behaviours at zero cost. Marketing firm Tribe Dynamics has developed a metric called “Earned Media Value” (EMV), which measures the marketing revenues saved through such social media promotional endeavours. It seems reasonable to suggest that such cycles of influence could transform social media platforms into agents for establishing and confirming user biases towards body images, diets and lifestyles just as fake news can influence peoples’ political beliefs and behaviours.
  
Social bots
Bots are automated software applications. Social bots, with fake identities, control social media accounts and trick legitimate users that they are real human beings and they then automatically generate and spread images and information at a much higher rate than any human. This can significantly affect users’ opinions and behaviours. Although illegal, social bots are provided as a service by marketing companies. Celebrities use them to boost their social media images and make them appear to have many more followers than they actually do; and this can legitimize them being social influencers.  Social bots are most common on Twitter, but they are also used on other social media platforms. For instance, as mentioned above, Facebook is reported to have some 83m fake accounts. What differentiates social bots from other forms of malware is the fact that they specifically exploit social media’s trust factor to join networks and friendship groups so that they can influence users’ opinions and behaviours. Social media platforms are beginning to employ neural networks to identify social bots and close them down, but still they persist.
 
Users’ naivety
A significant proportion of social media users do not understand the hidden mechanisms used to influence an individual’s opinions and behaviours. While most social media users understand that not all information they find online is truthful, a  2018  study by the UK government’s telecommunications regulator Ofcom suggests that 10% of social media users do not think about whether the “factual” information they find is truthful, and 23% do not make any checks on the trustworthiness of the content on social media. Although 54% are aware of how search engines are mainly funded, 18% give an incorrect response, and almost 28% do not know. Only 48% of search engine users are able correctly to identify advertising on Google, despite it being identified by a box with the word “Ad” in it, and just under 18% think that if something has been listed by a search engine it must contain accurate and unbiased information, although this figure has decreased since 2016, when 21% thought so.
 
6
The evidence

Extremeusers
It is well-established that teenagers and young adults spend a significant amount of time on social media and increasingly less time with traditional media such as TV, magazines and newspapers. According to Statista, in 2017, the average daily usage of social media worldwide amounted to 135 minutes, up from 126 minutes in 2016. Teenagers and young adults in the US and UK spend an average of 170 and 180 minutes a day respectively on social media. The 2018 Ofcom report, mentioned above, suggests that 6% of British children between 12 and 15 are “extreme users” of social media and spend up to 8 hours a day online at weekends, and this could negatively affect their mental health. Findings further suggest that during the week 1% of this cohort spends more than 8 hours a day on social media, 4% more than 6 hours and 11% between 4 and 8 hours. The report concludes that social media use in the UK is almost universal: 98% of 16 to 24-year-olds use social media as do 96% of those between 25 and 54.

Eating disorders
A 2011 study by researchers from the University of HaifaIsrael, examined 248 young women between 12 to 19 and found that more exposure to social media contributed to higher rates of eating disorders and related concerns. Specifically, the more time they spent on social media, the more likely they were to struggle with “…bulimia, anorexia, physical dissatisfaction, negative physical self-image, negative approach to eating and more of an urge to be on a weight-loss diet.”

Mental ill health
A  July 2015 paper published in Cyberpsychology Behavior and Social Networking, suggests a significant correlation between time spent on social media and experiences of high levels of psychological distress and suicidal ideation. Findings show that students with poor mental health spend longer on social media. An association between time spent on social media and mental ill-health is also suggested in a 2015 US study by the non-profit group Common Sense MediaBased on a national sample of more than 2,600 young people aged between 8 and 18, findings suggest that teenagers are spending more than 9 hours a day using social media; and children between 8 and 12 nearly 6 hours a day; and that time spent on social media impacts their mental health.

A 2015 report from the UK’s Office for National Statistics suggests that children who spend more than 3 hours a day on social media are twice as likely to report ‘high’ or ‘very high’ scores for mental ill-health. These findings accord with a 2017 study undertaken by Emily Frith for the OECD entitled Social Media and Children’s Mental Health. Frith’s findings suggest that there is a significant correlation between time spent on social media and mental ill-health: 37% of British 15-year-olds are “extreme social media users” spending at least 6 hours a day online and this may have damaging mental health consequences. Further, 18% of extreme social media users in the UK were more likely to report being bullied, which is a contributory factor of mental ill-health.

Cyberbullying and eating disorders
A 2018 UK all party parliamentary inquiry into social media and cyberbullying found that cyberbullying is, “distinct and potent, particularly due to its potential to be relentless". . .and there is an, “association between the time children spend on social media and their emotional well-being . . . . . Children and young people who are currently experiencing a mental health problem are more than three times more likely to have been bullied online in the last year.” The Inquiry also suggests that, “There is a connection between intensive social media use and mental ill-health - 38% of young people reported that social media has a negative impact on how they feel about themselves, compared to 23% who reported that it has a positive impact. This was exacerbated for girls, with 46% of girls stating that social media had a negative impact on their self-esteem.” A 2015 report by the US National Eating Disorders Association found that, “65% of people with eating disorders say bullying contributed to their condition”.

 
7
The global fashion industry’s advertising dollars
 
The global fashion industry has a market value of about US$3trn, and employs some 116m people. In recent years, as traditional media declined and social media became the principal way people consumed and shared content, so marketing revenues shifted from traditional content providers to social media. This migration is aided by the increase popularization of mobile telephony and the increasing availability and affordability of mobile internet. eMarketer, a consultancy, estimates that in 2018 US marketers will spend some US$48bn on digital display ads. Social advertising in all formats is gaining traction and will be among the key drivers of digital advertising growth in the next five years. Social advertising revenue is expected to reach US$31bn by 2021, up from US$16bn in 2016.
 
8
More research needed

We have described some research, which documents the “extreme” use of social media by teenagers and young adults and the rise in incidence rates of mental ill-health and eating disorders. Also, we have described some studies that suggest a significant association between the two variables. Notwithstanding, establishing significance between complex eating disorders and social media remains challenging despite the fact that the incidence levels of eating disorders increased during the period of rapid social media growth. Challenges to establishing significance include: (i) a relative lack of deep understanding of social media and the global fashion industry, (ii) a relative lack of consistent data for long-term time series studies, (iii) the fact that over the past few decades the diagnostic criteria of eating disorders have changed, and (iv) research methods and access to patient mental health data have also changed.

We also have shown that the concept of the thin ideal has been propagated by a media driven celebrity culture over the past 60 years. We describe some of the “hidden” mechanisms and techniques used by social media to spread specific messages in order to influence users’ opinions and behaviours. These, together with: (i) the rapid spread and “extreme” usage of social media and (ii) the fact that billions of marketing dollars have shifted away from traditional media to social networks in order to influence opinions and behaviours, is evidence to suggest that social media could have a significant influence on impressionable young girls’ perceptions about themselves, their body images and encourage them to engage in disorderly eating to reduce their body weight to an unhealthy level.
 
9
Takeaways
 
Social media is a communications revolution, which promised unprecedented connectivity and the free flow of ideas and knowhow, which transcends cultural and geographic boundaries and brings greater choice and enhanced freedom to billions of people. There is no better illustration of its power and influence than the Arab Springin 2010 when social media was used to instigate the overthrow of numerous dictatorships in various regions of the world. For a short time afterwards, social media appeared to be the gateway to a new era for democracy and freedom of choice. However, none of the spontaneous uprisings fuelled by social media resulted in any discernible long-term benefits. As social media grew so did peoples’ knowledge and understanding of the phenomenon, and so grew concerns that social media could be a two-edged sword with the capacity to damage and harm as well as do good. Social media might well be an accelerant for life-changing eating disorders, but it still has to be proven.
view in full page
  • CRISPR-Cas9 genome editing technology discovered in 2012 has revolutionized biological science and brought hope to millions of people born with incurable inherited killer diseases
  • In July 2018 the UK’s Nuffield Council on Bioethics endorsed the technology to make changes at the cell level in the human body that are heritable
  • This alarms bioethicists because there is no universally agreed regulation for CRISPR and the technology is cheap, easy-to-use and accessible and the line between “therapy” and “enhancement” is blurred
  • CRISPR was invented in the West but is rapidly being transformed into therapies in China where regulation is less than stringent
  • Will genome editing be used to enhance off-springs that satisfy parents’ preferences for children with specific characteristics?
 
 
CRISPR-Cas9 genome editing a 2-edged sword 
 

The genie is out of the bottle!
 
On the 17th July 2018 the UK’s Nuffield Council on Bioethics published a report entitled, Genome Editing and Human Reproduction: Social and Ethical Issues, which concluded that germline editing, a process by which every cell in the human body could be altered in such a way that the change is heritable, is “morally permissibly” under certain circumstances. The Council was referring to developments of an invention made in 2012 by scientists Jennifer Doudna, and Emmanuelle Charpentier. They discovered how to exploit an oddity in the immune system of bacteria to edit genes, which resulted in CRISPR-Cas9, (an acronym for Clustered Regularly Interspaced Short Palindromic Repeats), which is generally considered the most important invention in the history of biology. Since its discovery, modified versions of the technology have found a widespread use to engineer genomes and to activate or to repress the expression of genes. Clinical studies testing CRISPR-Cas9 in humans are underway.

 
In this Commentary

In this Commentary we: (i) describe CRISPR-Cas9 and indicate how it has impacted medicine, biotechnology and agriculture, but suggest that it is most famous for its potential to modify human embryos to provide therapies for inherited killer diseases for which there are no known cures, (ii) suggest that although the technology is gaining regulatory support for its use in humans, there is no universal regulatory agreement. Some countries remain opposed to using CRISPR to edit human embryos while in China regulations is less than stringent. This patchy and loose state of affairs raise concerns among bioethicists, (iii) describe a non-profit agency that has significantly increased the accessibility of the technology, which has helped to democratise CRISPR, but also makes it easier for less stringently controlled laboratories to acquire it, (iv) briefly describe the Chinese scientists first use of the technology in humans and some of the unintended consequences which resulted. We provide examples of research that followed and briefly describe the US-China race to transform CRISPR into viable therapies, and suggest that China, helped by laxed regulation, is winning the race, (v) suggest that these factors, plus the fact CRISPR blurs the distinction between ‘therapy’ and ‘enhancement’, seems to convince bioethicists that the technology at some point in the future will be used to create ‘designer babies’, (vi) conclude by noting that for millennia people have been using radical and painful methods to modify their own and their children’s bodies and this seems to suggest that in time, germline editing will be perceived as a logical extension of these customs and practices, the genie is out the bottle and customize children are likely to become the norm.
 
CRISPR-Cas9

CRISPR is a mechanism deployed by bacteria to identify the DNA of invading viruses and is used by scientists to target a specific gene. Cas-9 is an enzyme, which acts like a pair of molecular scissors to cut out a piece of DNA and, if need be, replace it with a new gene. The process is faster, cheaper and easier to use than traditional genetic modification and has been likened to editing a Word document on a computer. Thus, gene editing has been taken away from highly skilled and tightly regulated molecular biologists and made more widely available. This not only democratizes science but also heightens ethical concerns.
 
CRISPR technologies impact medicine biotechnology and agriculture
 
Since the breakthrough was made in 2012, CRISPR-Cas9 has quickly development into a powerful, cheap and accessible tool in genetics. The technology is programmable, efficient, precise and scalable and has driven significant advances across medicine, biotechnology and agriculture throughout the world. As the world’s population and average temperatures increase, the demand for larger, more nutritious harvests and climate-adaptable crops will grow. The application of CRISPR technology to agriculture allows for an efficient and accurate mode of genetic manipulation to meet these increasing needs. The technology also has been used in the fight against malaria. According to a 2018 World Health Organization report, in 2016 there were 216m cases of malaria worldwide and 445,000 deaths from the disease. Malaria is spread by the female Anopheles-gambiae mosquito, which is one of 3,500 species of mosquitoes. Scientists have used CRISPR technology to edit the genes of this specific type of mosquito to avoid the malaria causing parasite. In a study carried out at Imperial College London and published in the September 2018 edition of Nature Biotechnology researchers succeeded in destroying a population of trapped Anopheles mosquitoes by using CRISPR  technology to genetically alter cells  to spread a genetic modification that blocks female reproduction so, over time, the malaria spreading Anopheles mosquitoes die out. The research demonstrates how a specific CRISPR application can propagate a particular suite of genes throughout an entire population or species and empower scientists in the war against diseases. “It provides hope in the fight against a disease that has plagued mankind for centuries,” says Andrea Crisanti, lead author of the Imperial study.
 
But the one application, which has made CRISPR famous is the modification of the human genome, which promises to cure some of the world’s deadliest diseases for which there are no known therapies. There are some 10,000 genetic diseases of which less than 6% have approved treatments.
 
Regulatory support
 
CRISPR genome editing technologies have been gaining regulatory acceptance for their use in humans and an increasing number of scientists in the US, UK and China have reached conclusions similar to those of the Nuffield Council, and suggest that if germline editing is shown to be safe and there are no medical alternatives, it should be permitted to prevent children being born with fatal diseases. In 2017, the UK’s Human Fertilization and Embryology Authority approved an application to use genome editing, which allows scientists to change an organism’s DNA in research on human embryos. Also, in 2017 a report from the US National Academy of Sciences (NAS) stated that clinical trials for editing-out heritable diseases could be permitted in the future for serious conditions under stringent oversight. At the same time as the Nuffield Council published its findings, - July 2018 - the US Food and Drug Administration (FDA) Commissioner Scott Gottlieb announced a new regulatory framework for genome editing for rare diseases. The following month, - August 2018 - the FDA along with the US National Institutes of Health (NIH) issued joint guidelines for a new streamlined process for assessing the safety of gene-therapy human clinical studies.  And in an August 2018 New England Journal of Medicine editorial Gottlieb and NIH Director Francis Collins argue that, “there is no longer sufficient evidence to claim that the risks of gene therapy are entirely unique and unpredictable - or that the field still requires special oversight that falls outside our existing framework for ensuring safety.”
 
No international regulatory framework for CRISPR triggers concerns
 
Despite increasing support for genome editing, to-date no internationally agreed regulatory framework exists that addresses the ensuing scientific, socio-ethical and legal challenges CRISPR technologies pose for regenerative and personalised medicine. Regulation is on a country-by-country basis and most nations struggle to assess whether gene editing may or may not be different from classical genetic engineering. Several nations remain opposed to the use of the technology in humans. The most contentious issue is human germline editing.

In Canada human germline editing is a criminal offence and sanctions range from fines of US$400,000 and up to ten years imprisonment. However, there is mounting pressure from Canadian scientists to change the law. France restricts genome editing research and supports the Oviedo Convention, which is the first multilateral binding instrument entirely devoted to bio-law. It came into force in 1999, backed by the Council for Europe and aims to prohibit the misuse of innovations in biomedicine. The treaty states that, “An intervention seeking to modify the human genome may only be undertaken for preventive, diagnostic, or therapeutic purposes and only if its aim is not to introduce any modification in the genome of any descendants”. In Germany germline editing is constrained by its 1990 Embryo Protection Actwhich prohibits the generation and use of embryos for basic research, and also prohibits the harvesting of embryonic cells. South Korea’s Bioethics and Biosafety Act prohibits genetic experimentation, which modifies human embryos. Western observers suggest that regulation in China is “thin and tends to be at the provincial and hospital levels. It has been reported that Chinese hospital review boards have approved clinical studies involving gene-editing and cancer patients without fully understanding the nature and power of the technology.
The “dark-side” of CRISPR technology

Weak regulation raises concerns about the level of ethical conduct in clinical studies and the potential dangers this holds for future therapies. Cognisant of CRISPR’s powerful capabilities, its relative cheapness and accessibility, (see below) James Clapper, the former US Director of National Intelligence describes CRISPR-Cas9 gene editing in the 2016 and 2017 Agency’s Worldwide Threat Assessment reports submitted to the US Congress as, “a potential weapon for mass destruction”. Jennifer Doudna, one of the inventors of CRISPR-Cas9 says that there are things which you would not want the technology used for and, “most of the public does not appreciate what is coming”. These sentiments resonate with bioethicists concerned about the absence of stringent universal regulation and the technology getting into the “wrong hands” and resulting in “designer babies”, an escalation of societal inequalities and increased safety and biosecurity issues.
You might also like:

The global competition to translate genomic data into personal medical therapies

PART 1
 

and

PART 2
 
 
Democratizing the CRISPR technology
 
Notwithstanding, many scientists view the ease of access to CRISPR technologies as a significant driver of cutting-edge research and the speed at which therapies for life-threatening diseases will enter clinics. The organization most responsible for CRISPR’s widespread accessibility is Addgenea self-sustaining, non-profit plasmid repository, which facilitates the exchange of genetic material between laboratories throughout the world. (A plasmid is a small DNA molecule within a cell that is physically separated from a chromosomal DNA. It can replicate independently and is used in the laboratory manipulation of genes). It is free for scientists to deposit plasmids in Addgene and a nominal fee is charged for requests. This allows for maintenance and growth of the repository without reliance on grants or external funding. Founded in 2004, Addgene has significantly reduced the frustration scientists experience sharing plasmids with one another. The organization has developed into an important one-stop-shop for depositing, storing, and distributing plasmids globally and this has significantly enabled the democratization of CRISPR technologies. More than 6,300 CRISPR-related plasmids have been developed by over 330 academic laboratories throughout the world and deposited with Addgene. Since 2013, the organization has distributed over 100,000 CRISPR plasmids to some 3,400 laboratories in more than 75 countries. 
 
Mixed results when CRISPR was first used in humans
 
CRISPR technology was first used in humans in China, when a group of scientists led by Junjiu Huang from Sun Yat-sen University in Guangzhou, attempted to modify the gene responsible for β-thalassemia, a potentially fatal blood disorder. Although the genomes of human embryos edited by the scientists could not be developed into a foetus, the researchers had difficulties publishing their findings because of ethical concerns. After being rejected by the journals Science and Nature their paper was published in 2015 in the journal Protein & Cell. The work triggered an international debate, but the research had a low success rate: only 4 of the 54 embryos that survived the technique carried the repaired genes. Huang and his colleagues identified two challenges. One was unintended genetic modifications - off target effects - when CRISPR either changes a gene scientist did not want changed or it fails to change a gene that they did. The second was that embryos, which did not get edited correctly mixed with those that did and became what is referred to as a “mosaic”.  
 
New study discovers the deletion of thousands of DNA bases
 
Initially, these anomalies were thought to be minimal and improvements to the technique were thought to be able to reduce them so that they were virtually undetectable. Indeed, since 2015 the science of human genome editing has advanced significantly and there has been an explosion of research. In 2017 alone, there were some 3,500 research papers published on CRISPR technologies but concerns about CRISPR’s accuracy remain. During the past three years of intense research CRISPR-Cas9 became popularly perceived as a technique that can edit genetic code to correct defects inside individual cells and prevent and heal many intractable illnesses. Notwithstanding, also there has been a growing concern among scientists that because Cas9 enzymes reprogram the DNA of a cell, which is the fundamental building block for the development of an organism, the technique, if inaccurate, may cause more harm than good. Recent research supports this view. A study published in the July 2018 edition of  the journal Nature Biotechnology discovered deletions of thousands of DNA bases, including at spots far from the edit. Some of the deletions can silence genes that should be active and activate genes that should be silent, including cancer-causing genes. This suggests that previous methods for detecting off-target mutations may have underestimated their true scale and therefore the potential for unintended consequences when using CRISPR technologies might be higher than originally thought. This finding poses a significant challenge for developing policy associated with CRISPR because you do not know what off-target effects will occur in humans until you use the technology.
 
Who is developing CRISPR-Cas9 therapies?
 
Notwithstanding, CRISPR–Cas9 is fast entering mainstream R&D and is perceived as a principal technology for treating diseases with a genetic basis and is increasingly playing a significant role in drug discovery. Scientists use the technology to either activate or inhibit genes and can determine the genes and proteins that cause or prevent specific diseases and thereby identify targets for potential therapies. Notwithstanding, drug development is a long and expensive process: it can take more than a decade and cost some US$2bn for researchers to move from the discovery of a target molecule to the production of a clinically approved therapy.  So, it could be some time before the first drugs using CRISPR–Cas9 gene editing make it to the clinics. Notwithstanding, a lot has been achieved in a relatively short time.
 
Research examples

UK examples of research using CRISPR technology include scientists from the Huntington’s Disease Centre at University College London’s Institute of Neurology, who in 2017 completed the first human genetic engineering study, which targeted the cause of Huntington’s disease and successfully lowered the level of the harmful huntingtin protein that irreversibly damages the brains of patients suffering from this incurable degenerative condition.  In another study using CRISPR technology and published in a 2017 edition of the New England Journal of Medicineresearchers from Barts Health NHS Trust and Queen Mary University London  made a significant step towards finding a cure for haemophilia A, a rare incurable life threatening-blood disorder, which is caused by the failure to produce certain proteins required for blood clotting. 
 
Human clinical studies
 
Although CRISPR has proved its worth as a research tool, its use as a therapeutic is still uncertain. This is partly because the technology is so new there is a dearth of data upon which to base clinical evaluations. Notwithstanding, since Chinese scientists first used CRISPR to edit a human embryo's genome, new and more accurate variants of CRISPR have been developed. At about the same time - 2015 - that Huang published his findings using CRISPR for the first time in humans, two children with Acute Lymphoblastic Leukaemia, an incurable cancer, were treated at Great Ormond Street Hospital (GOSH) in London with a version of CRISPR called CAR-T cell therapy. This entails extracting blood cells from patients, then using CRISPR technologies to edit the T cells outside the body - ex vivo gene therapy - in order to transform the cells into enhanced cancer fighters before reintroducing them back into the patient’s blood stream. The treatment proved to be such a success that in 2018 CAR-T cell therapy was made available on the NHS. A US clinical study using the same technique started in August 2018 for people with Acute Lymphoblastic Leukaemia
 
Over the past three years scientists in China have used newer versions of CRISPR to genetically engineer cells of at least 86 cancer and HIV patients. These cases form part of eleven human clinical studies using CRISPR-Cas9 technologies, ten of which are being undertaken in China. Another development of CRISPR is ‘base-editing’, which chemically modifies rather than cuts DNA. An August 2018 edition of the journal Molecular Therapy, describes how scientists in China used  base editing, to remodel the DNA of human embryos to treat patients with the Marfan syndrome, which is a relatively common inherited connective tissue disorder with significant morbidity and mortality. A further milestone for the technology was reported 2018 when a study, led by Zheng Hu of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China, was the first to edit human cells while inside the body in an attempt to eliminate the human papilloma virus, which is the main cause of cervical cancer.
 
Company activity and clinical studies
 
Since the first publications in 2012 showcasing CRISPR-Cas9 as a gene editing tool, a number of companies have been set up to leverage the technology to develop innovative therapies. For example,  Editas Medicine, was founded in 2013 by Feng Zhang, Jennifer Doudna, David Liu, George Church, and J.Keith Joung. However, just a few weeks after the company’s formation, Doudna stopped all involvement with Editas after Zhang was granted a number of CRISPR patents and issues concerning intellectual property began to appear. In October 2018 Editas filed an Investigational New Drug (IND) application with the US Food and Drug Administration (FDA) for a clinical study of a CRISPR genome editing medicine called EDIT-101 for the treatment of Leber Congenital Amaurosis type 10 (LCA10). This is a serious eye disorder that affects the retina, which is the specialized tissue at the back of the eye that detects light and colour. People with LCA10 typically have severe visual impairment from infancy.

In 2018 the European Patent Office granted Cellectis, a French biopharmaceutical company, the first patent to use CRISPR technology in human T cells.The patent will protect the application of CRISPR gene editing for T cell research until 2034, meaning every other company employing similar systems will need a license from Cellectis. Also, in 2018 CRISPR Therapeutics, co-founded by Emmanuelle Charpentier began a clinical study using CRISPR genome editing technologies and a similar ex vivo approach to target the blood disorder β-thalassemia. As yet no CRISPR therapies have reached the clinic.
 
US-China competition
 
There is intense and growing scientific competition between the US and China. Although CRISPR was invented in the West, it is more rapidly being transformed in China into therapies that can be used in clinics. An article in a January 2018 edition of the Wall Street Journal suggests that regulation governing genome editing of human embryos in China is much less stringent than in the West where researchers have to pass muster with hospital review boards, ethics committees and government agencies before receiving approval. In China it is not unusual simply for hospital committees to give such permissions. According to Carl June, director of translational research at the Abramson Cancer CenterUniversity of Pennsylvania and well-known for his research into T-cell therapies for the treatment of cancer, “We are at a dangerous point in losing our lead in biomedicine. It is hard to know what the ideal is between moving quickly and making sure patients are safe”. Western scientists believe that the less that stringent regulation in China gives Chinese researchers a significant competitive advantage in the race to get CRISPR therapies into clinics and bioethicists believe that loose regulation will result in unintended consequences that will harm patients and lead to “designer babies”, which could set-back the field for everyone.
 
Blurred line between therapy and enhancement
 
What makes regulation challenging is that CRISPR technologies blur the distinction between “therapy” and “enhancement”. Indeed, the 2018 Nuffield Council report referred to at the beginning of this Commentary suggests that such a distinction between therapy and enhancement cannot be expected to hold. Thus, it seems reasonable to assume that sometime in the future, CRISPR technologies, which are cheap, easy to use and accessible could be used to genetically enhance off-springs. In the first instance this solely might be focused on eradicating life-threatening diseases, but in the longer term it seems probable, especially in the absence of any universally agreed and tightly administered regulations, that genome editing will be used to create off-springs, which satisfy parents’ preferences for children with specific characteristics. Further, CRISPR technology is becoming popular among DIY scientists and biohackers – people who experiment on themselves - which exacerbates the concerns of bioethicists.
 
People have been radically altering bodies for millennia
 
Another reason to believe that germline editing will be used for ‘cosmetic’ enhancements rather than medical therapies is that for millennia people have used radical techniques to modify their own and their children’s bodies for cosmetic rather than therapeutic purposes. Here we illustrate the point with a few examples.
 
From the Song dynasties, which ruled China between 960 and 1279 until the early 20th century, the Chinese practiced the custom of breaking their first daughter’s toes and tightly binding them under the soles of their feet in order to stunt growth so that when the girl grew up she would walk diffidently, which was perceived as attractive. In England during the Victorian era between the mid 19th and the beginning of the 20th century, women, to make themselves attractive to men, corseted their bodies so tightly to create twelve-inch waists that their internal organs were redistributed with potentially dangerous consequences. Girls as young as 4 from the Kayan tribe of Myanmar use heavy brass coils to elongate their necks; a painful tradition dating back to the 11th century. The brass coils, that weigh an average of 10 kilos, deform their collar bones and neck and shoulder muscles. The Mursi tribe in Africa cut the lower lips of girls and insert plates to stretch the lips up to 12 cm in diameter.
 
In the 1970s and 1980s elective cosmetic surgical procedures gained popularity among wealthy people on the East and West coasts of America in order to enhance their appearance. The trend soon became global through the explosion of mass media. According to the International Society of Aesthetic Plastic Surgery in 2017 there was a 9% overall annual increase in surgical and nonsurgical cosmetic procedures globally. The US was the leader, accounting for 17.9% of all procedures. The top five countries were the US, Brazil, Japan, Italy and Mexico, which together accounted for 41.4% of all cosmetic surgical procedures worldwide. Russia, India, Turkey, Germany and France completed the top ten countries. In 2017, 400,000 American women elected to have breasts augmentation surgery; a 41% increase since 2000. About 1m rhinoplasties are carried out each year, with high volumes in Brazil and Mexico. The International Society of Aesthetic Plastic Surgery also reported that in 2016 surgeons in South Korea carried out the most cosmetic surgical procedures per capita: 20 per 1,000 people. V-shaped chins, with minimal jaw or cheekbone, round skulls, lifted lip corners, petite lips and slight puffiness under the eyes have been popular surgeries in South Korea, but recently the demand for such procedures has decreased while simpler and less invasive surgeries have increased. The Society also reported that labiaplasty showed the biggest (45%) increase since 2015. Lower body lift procedures increased by 29%, while upper body lift, breast augmentation using fat transfer, and buttock lifts increased by some 20%.

Such examples suggest that body enhancements, using a range of techniques, have been practiced in many cultures throughout the world for millennia. Thus, it seems reasonable to assume that in the absence of stringent regulation CRISPR will be perceived by some as just another enhancement technique.
 
Takeaways

The discovery of CRISPR Cas9 has revolutionized the way we think about developing therapies for the world’s deadliest diseases. This powerful technology has significant advantages over traditional medical technologies; it is cheap, easy-to-use and accessible, and these factors have helped to drive CRISPR’s global acceptance and use as a tool for new and innovative therapies. Over the past three years CRISPR R&D and clinical studies have developed at a pace and bring huge promise and significant hope to millions of people living with conditions with high rates of morbidity and mortality. Notwithstanding, bioethicists warn that with the absence of stringent universally agreed regulation, all these advantages could easily pivot into significant disadvantages and lead to parents enhancing the genetic composition of their children to make them taller, more intelligent etc. This could be a small step away from reigniting the ‘Charles Galton movement’. Galton was an English scholar and cousin of Charles Darwin. He lived during the Victorian era and died in 1911. Among other things, Galton studied anthropology and sociology and suggested that the elevated social position and heightened intelligence of the English upper classes and the criminality and lack of intelligence of the English under classes were all inherited traits and the result of superior and inferior genetic make-up respectively. According to Galton societies could be improved by selective breeding. Bioethicists are concerned that CRISPR technologies could be used for a 21st century version of Galtonism.
 
The genie is truly out of the bottle.
view in full page